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GENERAL INTRODUCTION

This final report on NASA Study Contract No. NASw-688 is
a compilation of the analyses and investigations conducted at Bissett-
Berman on Guidance and Navigation for Apollo.

Early in the contract a procedure of submitting technical notes
to NASA Headquarters immediately upon completion of each phase of
analysis or investigation was established in order to make the results
of the study rapidly available to NASA. This report is essentially a

collection of these notes, organized into four main categories:

L Ground Support to Apollo in Aborts
II. Far-Side Relay '
II1. CM/SM Abort Guidance

IV. Lunar Landing

Some of the notes previously submitted to NASA are not included
in this report since they were produced primarily for learning purposes
or for internal information.

The majority of the effort has been devoted to investigating the
capability of the MSFN for orbit determination and therefore, the pre-
ponderance of notes deal with this task. The feas:” ility of using the
S-IVB booster to provide a far-side relay is the subject of several
notes included in Section II. The problems of CM/SM abort guidance
and lunar landing are treated in Sections III and IV, respectively.

Since Section IV, Lunar Landing is classified, it is contained under
separate cover,

As recommended by NASA Headquarters personnel, a double
precision program for calculating the covariance matrices of the maxi-
mum likelihood estimators of the orbit parameters is being prepared,
and when the results of the computer runs are available, a summary
report will be prepared. The summary report will contain data on the
capability of the MSFN for orbit determination under the following

sets of conditions:



a. Range-rate data only from one station (no apriori

information).
b. Range data only from one station (no a priori information).
c. Range and range-rate data from one station (no a priori
information).
d. Combination of range and range-rate from multiple

stations (no a priori information).
e. The effect of apriori information on a, b, ¢, and d.
f. The effect of intermediate boosts.
Some preliminary results of the computer analyses are presented
at the end of Part I of this report. It is expected that the completed

summary report of the computer error analyses will be available in

about 2 to 3 months.
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PART I

GROUND SUPPORT TO APOLLO IN ABORTS



PART Lt GROUND SUPPORT TO APOLLO IN ABORTS
INTRODUCTION TO PART I

Ground system support to the Apollo vehicles in an abort situ-
ation is strongly dependent upon the ability of the ground system to
determine the orbits of the Apolio vehicles.

A study was initiated to discover how well the ground support
system can determine the Apollo vehicle orbits abcut the Moocn., At
the start of this study, the orbit determinations were to be made using
range-rate data from a single DSIF station.

The DSIF range-rate capabilities were determined -1—,/ and a
number of rough analyses performed to find out if, indeed, these DSIF
measurements would be useful. These rough analyses considered
simplified situations to make solutions to the problems tractable. They
included several analyses for determining the in-plane orbit parameters

assuming the orbit plane orientation known, or determining all the orbit

parameters except rotation of the orbit plane about the line-of-sight. 2/

1 Bissett-Berman Corporation Apollo Note No. 17, DSIF Accuracy
and Report C60-6, DSIF Capability for Apollo Guidance and
Navigation (C).

2/

- Bissett-Berman Corporation Apollo Notes No.
32. Derivation of Four LEM Orbit Parameters from Doppler
Data Only.

40. Use of the DSIF to Determine Orbits About the Lunar Surface.

41. Generalized Future Rang- " “near Error Coefficient for the
Restricted Two~-Body Prc.. ..a.

50. A General Technique to Derive Smoothing Error Coefficient
for the Restricted Two-Body Problem.

60. Error Analysis for Determining In-Plane Orbit Parameters
Using DSIF Doppler Measurements During Descent Into
Synchronous Orbit.

61, Determination of Selenocentric Orbit Parameters with DSIF.

64. Capability of the DSIF for Determining In-Plane Orbit
Parameters During Ascent.

67. Calculation of Covariance Matrices, 1.

73. Some Additional Error Calculations for Determining Three

In-Plane Orbit Parameters from DSIF Doppler Measurements.

80. Correction to Calculation of Covariance Matrices, I., and Report

C60-6, DSIF Capability for Apollo Guidance and Navigation,




Two other analyses were performed to determine the rotation
of the orbit plane about the line-of-sight, assuming the other parametei’s
were known. E2

These analyses indicated that it was likely that the DSIF could
be of assistance in determination of orbits about the Moon, so a more
comprehensive analysis to determine all six orbit parameters was
initiated. This was done for range-rate data from a single observing
station, and included motion of the station abou* the Earth and motion
of the Moon about the Earth. These motions must be included to make
determination of the orbit orientation possible under these conc -ons.
The general method of analysis is indicated in Bissett-Berman Corporation

Apollo Note No. 43, The Calculation of the Covariance Matrix of the

Maximum Likelihood Estimators of Orbit Parameters Obtaircd from

Range-Rate Data*., The details of the analysis leading to a computer

program to perform the necessary computations are given in Apollo

Note No. 82, Calculation of Covariance Matrices IIl. * The analysis

of Apollo Note No. 82 is of special interest in that the problem has
been formulated in such a fashion that results are still computable
when the orbit eccentricity approaches or equals zero.

About this time there was a redirection of effort on this con-
tract, with emphasis on ground support system assistance to the LEM
during aborts, and characterized by relatively short total times of
observation so that observing station motion and motion of the Moon in
its orbit were no longer important considerations. The analysis including

"these motions, however, is still employed.

3/

- Bissett-Berman Corporation Apolio Notes No.

37. Accuracy of Measuring CM/SM Position in Lunar Orbit
Relative to 2 Lunar Landmark by Optical Sighting.

48. CM Orbit Orientation, and Report
C60-6, DSIF Capability for Apollo Guidance and Navigation,

Titles marked with an asterisk are Apollo Notes included in
this Final Report.
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At the same time, it was suggested that range and angle data
irom observing stations also be employed, and that observations from
multiple stations be employed simultaneously. The necessary analysis

appears in Apollo Notes No. 77, Calculation of Covariance Matrices

for Multiple Uncorrelated Data Sources*, No. 83, Use of Range and
Range-Rate Dataand No. 94, Use of Angle Data,

The question of whether the choice of a time origin affects
the standard deviations of estimated quantities has arisen several
times in the course of this control. Apollo Note No. 85, The Equiva-

lence of Data Processing Schemes in Linearized Error Analysis %

shows that the choice of time origin has no effect.

As part of the problem of assisting the LEM in ascent, it is
necessary to be able to make use of a priori information or information
telemetered from the Apollo vehicles. The means for orbit parameter
covariance matrix determination on the basis of all this information is

spelled out in Apollo Note No. 95, Ground Assistance to LEM, Including

Mid-Course Correction®* which indicates how to make use of a priori

information and telemetered boost data, and Apollo Note No. 96,

Use of LEM/CM Observations* which indicates how the usefulness

of radar or visual sightings from the CM/SM can be included by a
very slight modification of the technique employed to make use of
observations from Earth.

Apollo Note No. 99, Preliminary Results of Computer

Analyses’, includes the results of computations to date.

The question of whether the ground support system can process
its observations fast enough to be of assistance in LEM aborts has
arisen several times in the course of this contract. The question

is answered in Apollo Note No. 93, Ground System Computation of

LEM Orbits* in which it is shown that the actual délay due to compu-

tation is small.
Before it was decided to restrict ascent orbit considerations

to the (present) nominal Hohmann transfer, two analyses were performed
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in a search for an optimal abort trajectory. One of these -‘—L-/ used a
modified Hohmann transfer followed by additional orbitings of the
Moon before rendezvous. The other 5/ chose an ascent scheme that
would allow for much larger guidance errors, trading increased time
to rendezvous for savings in fuel in the case of large guidance errors.
For awhile it seemed as though rendezvous and docking might
be the most critical portion of the abort, so aids to rendezvous in case
of equipment failures were discussed. &/ These included use of the
ground stations in docking, ring-a-round techniques for measurement
of scalar range and range-rate between vehicles, use of the LEM
landing radar, and an optical technique for obtaining range-rate

between vehicles.

é-/ Bissett-Berman Corporation Apollo Note No.
79. An Approach to Estimating the Allowable Injection
Errors for the DSIF Aided Rendezvous Scheme.
5/ 8l. Maximum Allowable Injection Errors for a Particular
DSIF Aided Rendezvous Scheme.
6/

= 87. Rendezvous Aids.
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APOLLO NOTE NO. 43 J. Holdsworth
15 April 1963

THE CALCULATION OF THE COVARIANCE MATRIX OF THE MAXIMUM
LIKELIHOOD ESTIMATORS OF ORBIT PARAMETERS
OBTAINED FROM RANGEZ RATE DATA

The purpose of this note is to enable one to determine the accu-
racy with which a set of M orbit parameters may be determined from
observations made upon some measurable quantity such as range, range
rate, etc. More precisely, it is assumed that at a discrete set of time
instants ti, wherei= 1, 2,... n, that a computer computes values of
some measurable function of the orbital parameters and time fc (al, .o
an g t). We further assume that the actually observed or computed

function may be written as the sum of 3 terms in the following way:

o
fm(t, _ch (t) + b+ n (t) (1)
The term b is a constant bias error, n (t) is assumed to be a
sample from a zero mean stationary gaussian noise process whose
correlation time is short with respect to the time interval between
successive samples. fC(t) then represents the data if there were no

noise or errors corrupting the observations.

Equation (1) may be rearranged to yield
n(t) = fm(t) - fc(t) -b (2)

Since n(t) is an additive uncorrelated zero mean normal noise

process, the likelihood function for N observations made at times ti’ .o tN

may be written:

[ o 2] |
L = _I%I__ exp L Z nz(i)_ (3)
z 1 J

i=
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2 . . . .
where o is the variance of a noise sample and where we have written

n (i) instead of n('ci) for convenience.

Equivalently from Equation (2) we may write:

N
L= — 3+ exp{—L—Z[f (i) - f (i)-b]z . (4)
. 3 2 0'2' [ m ¢

N =1 |

Now the estimators 5-\1, cee Qm for the M orbital parameters
are those functions of the observed data which render the data most
probable. That is,we estimate the orbit parameters by those functions
of the observed data which maximize the function L.. These estimators
are the maximum likelihood estimators for the parameters and are
themselves statistics having certain probability distributions, determined
by the distribution of the error process as well as the functional dependence
of the measurable quantity upon the orbital parameters als eesBppe To
determine how accurately these parameters can be measured we might
wish to compute the mean square error of the estimators. If the
estimators are unbiased as maximum likelihood estimators must be for
sufficiently large smoothing times, then the appropriate measure of
the accuracy of the estimator is its variance, so that the quantities of
interest would be the variances of the estimators.

However, the estimators of the orbital parameters are all com-
puted as functions of the same observed data so that generally, the
probability distributions of these estimators will not be independent.

Thus, the errors in the estimators may be expected to be correlated. It
is important to note that the correlation which we are discussing here

is the correlation among the estimator errors which arises from the
fact that the parametric estimators are computed from the same
observed data, and that this sort of correlation will,in general, exist
even though the successive noise samples are uncorrelated.

Now since it is likely that the ultimate use to which the present
analysis will be put will be the determination of certain system

errors as functions of the estimator errors, and since these system
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errors will depend in general upon the correlation existing between

the estimator errors, then it is important to compute these correlations.
Thus, because of the foregoing remarks,instead of merely computing

the variance of the estimators of the orbital parameters we shall com-
pute the covariance matrix of the estimators which will simultaneously
provide the information needed about the estimator variances and the
correlation between the estimators.

Let Cov (ﬁi, S.J.) denote the covariance matrix of the maximum
likelihood estimators of the orbit parameters, where the i, j th element
of this matrix is the covariance between the estimators of the i th and
the j th orbit parameters. ’

Since the maximum likelihood estimators of the parameters are
those functions of the observed data which maximize the likelihood
function, it follows from Equation(4) the estimators of the parameters
31, ...2,, and the estimator of the bias error b are obtained by the

M
simultaneous solution of the M + 1 equations.

1 X . . ] 8 £ (1)
+ [fm(l)-fc(l)-b g==— =0 fork=1,...,M (5)
k
1=1
and
1 . A ~ . o
+ Z[fm (1) - 1, Gy, By 1)] BN (6)
i=1 '
That is, the estimators 31, - 'a\LM are obtained by solving the

system (5) for a a, . as functions of the observed data. The

coey
bias error is ’cheln estinl\fated as in (6) by the arithmetic average of
the difference between the observed value and the values obtained
by substituting the estimators in place of the parametric values.

The system (5) is, in general, a nonlinear system of algebraic
or transcendental equations and will often be incapable of yielding
an exact solution. However, for a sufficient number of independent
observations or equivalently for a sufficiently large smoothing time,

the estimators 2 and D may be written:

TR
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”\
a. = a. + Aa,.
1 1 1

~ (7)
b =b+A4b

where the random error terms Aai and Ab are negligible except

where they appear as first order terms. Qualitatively this says

that our estimates get good when we have enough independent data.

Using (7) we may write:

M
A ~ : 3fc
fc (.':).1,...8.1\/1,1)=fC (al""a’M’l)+1jL:1Ta.l<— Aa.k (3)

Substituting Equations (7) and (8) into Equations (5) and (6)
allows us to write the following system of M + 1 equations which are
linear in the random error quantities Aai and Ab ‘

Cha=c¢e. (10)

For notational convenience, we have employed vector-matrix
notation in writing Equation (10). Aa and e are M + 1 dimensional column
vectors and Cis an M + 1 by M + 1 square matrix where the components

of these matrices are as defined below.

Na .\
) 1} N
Aa= :
2 AaM (11)
Ab
\
N
9f (i)
/ ,Zlaacl n(i)\
1=
e = : (12)
N .
9f (i)
8ac n (i)
i=1 M
N
n (i)




N og Bf_
—_— \ < <<
ij ~ z 9a. (k) 9 a (kJ 1=4,j= M
k=1 1
N Y
£
— clk) _ < e
CM +1,j 7 Z Sz - SyMe 1==M (13)
k=1 J
C

Now Equation (10) may be solved for the error vector in the

estimator components by writing:
Aa =C " e . (14)
Taking the transpose of both sides of (14) yields

wayT =T (c™)T =Tl ~ (15)
In (15), the superscript T denotes the transposition operation and
we have also used the fact that the matrix C is symmetric.
Multiplying Equation (15) on the left by Equation (14) yields
the following matrix equation:

Aa (Aa)T = C-l e e'T C-l (16)

where we note that Zquation (16) is a relationship between two square
matrices rather than between two column vectors.

Now by definition the covariance matrix of the parametric
estimators is the expected value of the matrix Aa (Aa.)T, thus, if we

let E denote the expected value operator we obtain:
Cov (Qi, gj) = C_l E [ e eT] C—1 (17)

However, since n (i) is an additive, stationary white noise process,
then,

E [ n (i) n (j)] = 5, o’ (18)
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where & ij is the Kronecker delta. Equation (18) together with
Equations (12) and (13) imply that

E[e eT}= o—-2 C. (19)

Thus, the expression for the covariance matrix of the estimators of

the orbit parameters may be written in the following simple form:

Cov (&, 9)) = -2 ¢t ‘ (20)
The utility of the expression (20) for the covariance matrix

of the estimators may be illustrated as follows. Let ( be an arbitrary

function whose value depends upon the orbit parameters and possibly

time and other non-random quantites whose values are known and

suppose that we desire the error in { due to the errors in the estimators.

|
Then if oy denotes the M + 1 dimensional column vector whose first

9 a
M components are gi i=1,...M and whose (M + 1) st component
is —g——%,’ ‘we may immedjiately write the following expression for the
variance of Y.
T : :
2 _ 2 o v -1 oy
MU (aa) c (aa) (21)

Equation (21) automatically accounts for the efiect of any
correlation which might exist between the estimators and explicitly
exhibits the reciprocal dependence between the variance and the

number of independent pieces of data in a concise manner.
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APOLLO NOTE NO. 77 J. Holdsworth
19 June 1963
CALCULATION OF COVARIANCE MATRICES
FOR MULTIPLE UNCORRELATED DATA SOURCES

The purpose of this note is to extend the methods developed
in Apollo Notes Nos. 3 and 43 to the case where multiple data
inputs are available. The previous notes have covered the case
where only one form of data, such as range rate from Doppler
measurements, was available. The present note will extend
these procedures to the case where range, range rate, and angular
data are all available. In the subsequent analysis we shall assume
that there is no autocorrelation in any of the three data inputs
and that the different types of data are not cross correlated.

As before we shall assume that there are certain parameters
a;, i=1, -+ 6, which we wish to estimate on the basis of our ob~
served data. We shall also assume that we have available range,
range rate, and angular data which we shall denote by R, R and @
respectively and that R, R and 6 may be written as invertible
functions of the parameters of interest a..

If our measurements could be made with complete accuracy
then any six observations would theoretically suffice to allow us
to determine the parameters in question. However, the measured
data is corrupted by random noise hence we must use our data
to obtain estimators éi of the orbit parameters a;. In reality
we are more interested in this note in obtaining an expression for
the accuracy or asymptotic accuracy with which the parameters
can be estimated rather than the computation of the estimators
from the observed data.

As in Apollo Notes Nos. 3 and 43 we assume that we may

write the following expressions:
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~
i

R (ai, t) + nR(t)

m C
Rm = Rc(ai, t) + n‘r-{(t) (1)
em = GC(ai, t) + ne(t)

In equations (1) the quantities subscripted m are the measured
quantities, the quantities subscripted c refer to the correct functional
values if the data were not contaminated by noise and nR(t), nf-{(t),
ne(t) indicates the additive random noise.

As mentioned before we shall assume that the noise processes
nR(t), nR(t) and ne(t) are independent, i, e, not cross correlated,
zero mean stationary white gaussian processes with variances o-RZ,
¢§2 and crez, respectively, From equation (1) we see that if we have
N observations on R, R and 6 that we may write the following expression

for the likelihood function of the data,

l .
L= exp - L (2)
(217)3N/20'RN O'RN o‘eN
where:
1 2
L= — [Rm(k) - R_(a,, k) ]
R K="
1 . . 2
+ > 02 [Rm(k) = RC (ai: k) ]
‘R k=1
] ; 2 |
+ e > [: 0 m(k) - ec(ai’ k) ] (3)
0 kK=
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As before the maximum likelihood estimators a, of the parameters
a; are those functions of the data which make the data most probable or
maximize the value of the likelihood function, They are obtained by

solving the equations

i=l,o..6 . (4)

for the parameters a, as functions of the observed data R_, R_and® .
X i m m m

Performing the indicated differentiations and substituting into

equation (4) we obtain:

1 8Rc 1 > - al.{c
2 ’ [Rc(ai’ k) - Rm(k) :} da. * L2 [Rc(ai’ k) - Rm(k)] da.
0-:R k=1 1 0‘R_ k=1 1
1 86C ,
+ > [ec(ai, k) - em(k)] 55 = 0 fori= 1, *6 (5)
R k=1 '

Now the functional forms Rc’ Rc’ OC are assumed known, as are the
observed data points Rm(k), f{m(k), Gm(k), thus equation (5) is actually
a system of 6 equations in tke a; which may be solved as a function of the
known data. The solutions a, of this system of equations in terms of the
observed data are the maximum likelihood estimators of the orbital
parameters ai.

Now as we have done in the previous notes we shall assume that
the smoothing time or number of samples N is sufficiently large so that
the following expressions may be written for the maximum likelihood

estimators:

B =a + na, (6)
1 1 i
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where the Aai zre sufficiently small so that only first order terms in these
random perturbations need be retained in various series expansions,
This assumption is always valid for sufficiently large sample sizes and
is exactly true whenever the dependence of the functions fc on the a;
parameters is linear,

Utilizing the above assumptions we may write the following approxi-

mate expressions,

A ° 8Rc
Rc(ai) k) = RC(ai’ k) + _8—8._ (ai’ k)Aai
i=1 ¢t
- A . aéc
RC (ai, k) = Rc(ai, k) + -s;— (ai, k) Aai (7)
i=1 : ’
A _ 00 }
Gc(a ,K) =6 (a., k) + Ta (ai, k) Aai
1= 1 1
R R 5R 3R
c A c c A _ ¢ 89 A _ 96
aai (a-i: k) = aal (a-: k) 3 aal (ai’ k) - aal (ai’ k)aa‘a"—i(ai: k)""a"a?i.(ai’ k)

Substituting equation (7) into equation (5) and performing some
routine algebra yields the following system of equations which is linear

in the random perturbation quantities Aa..

, "8R_  BR_ . ahc aRc
2 3Ja. (k) oa. (k) + 2 Ga, (k) 9a. (k)
=1 lxk="1\ °r . /

i j T
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L , OR . aRC . \
= > 53 (k) Rm(k) - Rc(k)) + 2 T (k) Rm(k) -R (k)
k="1L°R 1! "R *
1 aec \a
+— a—a-i— (k) _{Gm(k) - ec(k)’; fori= 1, 2, 6 (8)

%

In equation (8) it is perhaps worth mentioning that Rc(k), f{c(k),

ec(k) refer to the nominal value of these quantities at the time of the kth

observation, while Rm(k), l;lm(k), em(k) refer to the observed data
obtained from the kth observation,
Again if we define the estimator error vector Aa by the column
matrix
| pa

|

1
Aa = fa

&
w o

(9)

0‘«B U\B vlkg

then using matrix notation we may write the following vector equation:
Cla=ce, (10)

In equation (10) C is a 6 x 6 matrix whose i, jth element is given

oR 5R R OR 50 90
1 c c( 1 c 1

| Tz e Mg Wt = () 57— (K) + 5 5= (k) 5—(Kk)
L R i j Y i j g i j

(11)



Similarly e is a column vector whose ith component is given by:

: 1 9 c 1 0 c ° s
e. = ; — (k) (R_ (k) - R (Kk)) + —— (k) (R__(k) -R_(k))
2 oOa c .2 Oa, m c

i ) m
f=ilog d Ro7
1 8ec
> 5 (k)<9m(k) - ec(k))
o i
0
fori=1,2,*°° 6 (12)

Now, if the joint distribution of the parametric estimators is
non-singular; i, e., if the total probability mass of the estimator dis-
tribution does not lie in some subspace of dimension 5 or lower, then

equation (10) may be formally solved to yield:
La=C " e - (13)

Taking the transpose of both sides of equation (13) and noting that Cij =

Cji’ we obtain:

raT = eTc : (14)
Equations (13) and (14) are vector equations, Maultiplication of

(13) on the right by equation (14) yields the matrix equation
La La” =C ee C (15)

Equation (15) is a matrix rather than a vector equation, i,e.,
the quantities on both sides of equation (15) are 6 x 6 matrices, Moreover,
the elements of these matrices are random so that in similar observations
over the same smoothing interval we would expect a random variation

in the elements.



Since we have assumed large smoothing times the estimators
Qi of the parameters a, may be assumed to be unbiased,i. e,
A

Eai: a, (16)

or equivalenfly
EAai =0 (17)

- a fact which is always asymptotically true for maximum likelihood
estimators,

Since the estimators are unbiased the covariance matrix of the
estimator errors is obtained by taking the expected value of both sides
of equation (15) with respect to the joint distribition of the noise processes.
Thus, we may write:

A

cov A, 2) = £l sasat] = EEeT) !

(18)

where E denotes the expected value operator.
Since the matrix C is known and assumed non singular, it follows
from equation (18) that we have an expression for our desired covariance

matrix once we have computed

E(ee’) (19)
. . .th s . T. .

The element in the i, j position of the matrix ee” is simply
eiej, where the expression for e and ej is given by equation (12).
However, comparison with equation (1) shows that we may write:
e, = e g—-<aR° 1) ng () + — ;———RC (%) ng (19+ =5 32 (0 n () | (20)

i~ £y R 2 5z, " PR Z Ba, " P
—=1|r i R i oo i



c T . : ,
Now a term on the main diagonal of e e is of the form eiz where
e, is given by equation (20). Since nR(k), nf{(k), ne(k) were assumed to
be independent zero mean stationary gaussian random processes then

we have the following expressions:

w 1 = e

u-nR(x() nR( 1)-I = Gki R

£ n. ) ne ()] = 6. gl (21)
PR R kR

E[n0n (0] =6, o2
| Pt Mg VAT P Ty

and

E[nR(k) n-R(m] 0= E[ng (i) ng(1)] = E [nR(k) ne(z)]

for all k and £, where § ) is the Kronecker delta function.

Using equations (20) and (21) we see that a main diagonal term
q[ e eT is given by:

of the matrix E

N
. r .
2 2 2
Ee =E o = [ M0 PR W) T a0 9 | 4 (22)
3i i i da, 2 da. .2 da, 2
Ko b i TR i TR i Ty

fori= 1,2," * *6. Thus, we have an expression for the diagonal elements

of E[e eT] .

Now consider an off diagonal element E[ e, ej ] where i# j,

Then again from equations (20) and (21) we may write:

1 O9R (k) OR (k)
E[e.. ] = E[ e. e.] = < < (23)
ij i7j - 2 aai da.
=1L °R J
N 1 aRc(k) 8Rc(k) . ] aec(k) aec(k)
2 da. da. 2 Oa. da
R i j oy i b




Now from equations (22) and (23) we may explicitly calculate the
elements of the matrix E[ e eT] . Also since the elements of the
matrix C are known then C~! is known also which gives us our desired
covariance matrix by substitution into equation (18).

However, comparison of the defining equations for the elements
of the matrices C and E[ e eT:l - i. e., equations (11), (22) and (23) -

reveal the interesting fact that

E [e eT] = C, ' (24)

Thus equation (24) allows us to write the following expression for the

covariance matrix of the errors in the estimators of the orbital parameters,
A A
a., a

Cov { i ) =C (25)

J

CONCLUSION

In this note it will be noticed that there was no systematic bias
error assumed in any of the three data inputs. In reality there is reason to
suspect that there may be a non-negligible systematic bias error in the
range and angle data. The extension of this analysis to cover that situa-

tion is straightfiorward and is more of a notational nuisance than a con-

ceptual difficulty. The interested reader should be able to make the
necessary amendments by using the analysis in either Notes 43 or 3 as
a guide,

A more serious shortcoming of this note is that using the JPL

measuring procedure the range and the range rate data are very strongly
cross correlated, As other data collection schemes are under consider-
ation which would probably tend to reduce this cross correlation, it is
hoped that the results obtained in this note may be of use in some cases
of genuine physical interest,

Since the cross correlation of the data inputs does not unduly

encumber the necessary mathematics as long as the individual error
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processes may be assumed to be white or uncorrelated, another note
will appear shortly extending the current results to the case where

appreciable cross correlation exists between the data inputs.




APOLIO NOTE NO. 82 H. Engel
16 July 1963

CALCULATICN OF COVARIANCE MATRICES IiI

This note presents a means for finding the covariance matrix
when Doppler observations of a vehicle in an elliptic or circular orbit
about a moving Moon are made from a DSIF or MSFN facility on the
surface of the Earth. The orbit of the Moon is assumed circular, but
an elliptical orbit could be used with just slightly more computation.

The parameters chosen to describe the vehicle orbit are its
position and velocity with respect to the Moon at the time of the first
observation. This choice of parameters has the advantage that it is
possible to obtain expressions for the partial derivatives used in calcu-
lating the inverse of the covariance matrix that do not blow up when the
orbit eccentricity approaches or equals zero.

The vector from the Moon to the vehicle is r, the vector from
the Earth to the Moon is X_m, and the vector from the center of the
Earth to the observing station is Xd' The vector from the observing
station to the vehicle is s,

s = Xm+r-Xd

The observed quantity is the rate of change of distance between

the observing station and the vehicle, i.e., s. Now,.

m d
and
S = S
s
Then,
o5 _ Xm  ar _ %%4
da. =~ Dda. Sa a.
J J J J
_ a7
T da
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and

85 _ 1 T .58 T, 088 . Bs

da. s 0a. 9 a, 9 a

J J J J
. Ll |g.25 ,5.,25 & 5, 85
T s 8aj da s da
1 - 8T = 5 —‘ 5T
T s S ' %a +(S "5 °] %a

.

J
9 'si o 'si
Terms of the form —— are used in computing the
aaj o ay

matrix from which the covariance matrix is found.

It is convenient to use different co-ordinate systems in computing

X _, T, and i—d' By co-ordinate rotations i_m and X, are expressed in

the same co-ordinates as r so a's/aaj can be evaluated.

In the work that follows, the various quantities that must be

employed are presented in the sequence in which they are used in actual

computations.

The x'y'z' co-ordinate sy stem is right-handed, non-rotating and
Moon-~centered. x'is directed along the initial position vector (xo‘, 0, 0)
of the vehicle, vehicle motion is in the x'y' - plane, and y' is directed
so that y(’) is positive. The orbit parameters are the components of

1 -
, X

r and e in the x'y'z' co-ordinate system; these are x' 5

o
Sré , and 'z(; , and are called ay through ag respectively.

1 1
o’ YO, z o’
Note well that one can not employ the fact that a,, a3 and a, are
zero, until afier derivatives are taken; otherwise incorrect results are

obtained. For this reason two different expressions for a quantity may

be found, one perhaps including as, ag, and 2z, and used for differentiation,

and a second expression without as, ag, and ag and used for computation.

The cuantities used for computation are enclosed in boxes.
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The initial radius ?o is given by:

oy L Y] Y]
= 5 + a
TS a; x +a4y 32

in which the caret denotes a unit vector.

2 2 2

ro.. al +a2+a3
8ro

Zro 53 " Zal 61j+2a262j+2a363j
5T

o
da, —61_]

J

in which Si ; is the Kronecker delta

’

0ifi#j
5, .=
»J 1ifi=j
To T 21
s A A\
" - ' 1 !
‘o_a4x+a5y+a6z
2 - —
r =1 _er
o o o
2T ¥ =271 o1
o0 "0 o
T T
. o "o
r = —/——
o T
o

a.1 a4 + az a.5 + a3a6

O
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5 (x ¥ ) o _ or 5
52— = Yo Ba-t Yo 7 T was (@134 T 225t aj2y)
j j j j
8%0 aro
T 8aj = 51j a4 + 52j a5 + 53j a6 + 54j al + 653’ a2 + 66ja'3 - r -é-%-
oF_
a —_— =
1 TBa; 8453 T 8525

The angular momentum H is given by:

T - Ax Al A,
H = (aza6 a3a5) x' + (a?’a.4 - alaé) v+ (ala.5 - a2a4) z'
2 2 2 2
H™ = (aza6 - a3a5) + (a3a4 - alaé) +-(a1a5 - a2a4)
3 (a,a, - a,a.)
O H 276 375
2H 5= 2353 - 353g) 5a,
J J
9 (a,a, - a,a,)
374 176
+ 2 (a3a4 - ala.é) E)aj
+ 2 (a,a. ~a, a,) ° (alas _ 3234)
175 2 4 Baj
H-= aag
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@
o

- The orbit energy E is given by:

_ 2 2 2
2E = —]J'—r +a.4+aS+a.6
o
Y T
2E = a1 -i-a4+a.5
or
2E o o
2 ke 2 — 5T -i-Za.4 64j+2a565j+2a6 66j
] T ]
S FE
5a; © 8 4; ‘a"izl T8 eyt 855,

If the orbit eccentricity is e, then,

HZ

p (1 + e cos 6)

and

me
H

sin 9

where 0 is the central angle between the vehicle and perilune. Then

2

e cos 0 = I_i -1 |
!J,.L
2
e cos @ = H -1 a
o TN
Ha.
5
e cos 6 = -1
o B
I-28




and

. Hzr
e sin O =
I
H%O
esin@ =
o P
Ha
. 4
e sin@_ =
o M
Then,

Also,
)
eZ -1+ 2_2;
o)
so
2
1-e2=-2E(E)
o)
and
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If the eccentricity is not zero, then OO can be found from:

e sin v
o

o

=1
9, = tan (—a—c?s‘@‘o—

and if the eccentricity is zero, 90 can be arbitrarily chosen as zero.
Qo is always between -7 and w. In both cases sin 90 and cos 90 are

evaluated f{rom Go.

Now, >
a( H . 1)
9 (e cos OO) _ BT
da. - da.
J J
2 or !
- 1 r -1 oH + HZ o
n o aaj da
__H |,8H _ _H or
T our da T da
o J o J
9 (e cos 90) ag 5H
5a = A PO T
j j P
and H.ro
9 (e sin © ) 0
o —
oa. - oa.
J
_ 1 !- H 9 Yo Ly OH
- M da "To 0da.
L ] i
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The sine and cosine of the initial eccentric anomaly fo are

given by:
/5

2 .
(1 -e™) smOO

Sm5o= 1+ecosG0

. N\ -2E ;
sin 50 = = sin Qo

5

and

e + cos 6
cosé = - Q
o 1-recos(9o

e + cos ©
o

(f -1 sinéo

° cos &
(o}

& o is always between -mw and 7.

condition is:

The mean anomaly at the initial

™M =5o-esin Eo

(o]
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and the mean motion, n, is

-2E V-2E

n

so the time, to’ from perilune to the initial point, T = 0, is

t, = MO/n
also,
on _ 3 n QK
da. 2%  da.
J J
Y
2
Then, (1-e%) '“ (e sin 8.)
e51n£o= 1+ e cos @
o
2 V2
) d(e sinf;'o) 9 (1-e°) / da. 9(e sin 90)/aaj
. = +
B
e sin & aa’j (l-ez) 2 e sin ©
o) o)
0 (e cos QO)/aaj
1+ ecos @
o
5 (e sin &) e Sin50 2 sin 5 0(esin® ) e sing d(e cos @
- o’ _ de "o ol o o)
'c)aJ 2 (1_62) da sin Qo 0 aj 1+ e cos 90 aaj

y

. . 2
3 (e smfo): -e s.nfo aeZ (1_62)

9 (e sin Oo) e singo

d (e cos 90)

da. o 2. Sa. ite cos g Oa. " Tt¥e cos ©
J (l-e7, ] J °

da.
J
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e2+ec039
o

eCOSE =
(¢]

1+ ecos @
o)

2 5 2
O (e cos 50) (1+ecos GO)(B e /Baj +9 ]:e cos Goj/aaj)—(e +e cosOO)a (e cos OO)/aa.j

3 aj (1+e cos 90)2
9 (e cos 50) ) 1 5 eZ N (1_e2) 0 (ecos 90)
0 a. T~ 1+ ecos® da, 2 9 a.
j o j (1+e cos 90) j
Also, since
2 _ 2 . 2
e = (e cos QO) + (e sin 90)
it follows that
e de =ecosO d(ecosB )+esinb d (e sin 9 )
o) o o o
so
Be _ cos 0 o (e cos GO) t cin o 0 (e sin 90)
oa, o da. o oa.
J J J
Since
1 e sin 50
é = tan
e cosE
o
it follows that (e 51n5 ) (e cosg )
8}‘.’ ecosg -esmf —————-
e _ 1 j
0 aj 1+ ta.nZ Eo (e cosgo)
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SO

. RS - cos £ 8 (e sin 50) s d (e cos 50)
da. o da, "0 ca. .
J J ’
J
Since
Mo = 50 - e sin éo
it follows that:
OMO = ago —ecosé 8¢§o - sin 5 Se
da. o a. o 0Qa. o oa.
J J J J
5 ) 850 ) sin ﬁo an
= (l-e cos ¢, Baj 2 e da.
e Mo = (l-e cos &) |e “o - Smcfo 9 eZ
oa o aaj 2 o] aj

At any time T after the initial observation, the time from
perilune is

and the mean anomaly is

M = nt

The corresponding eccentric anomaly must be computed by
solution of the equation

M = é-esiné
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and the values of sin & and cos Z found from E .

Then the trigonometric functions of the central angle are

2,12
in O = (1-e7) sin £
1 -ecos i
and
cos 6 cos & - e
1 -ecos 5
Now,
an £ - sin& _ (1-¢% sino
T cos&E e+ cos &
so
5& _l-e cosC 968  sin £ 8e2

= T
aaj (l-eZ) /> aaj 2 e (l_ez) aaj

Then from

M = E-esing

it follows that

. 2
oM _ 9& sin£ Qe
5, - (L-ecosl) = - 252 o=
J J J
(1 -e cos& )2 09 sinf | 1l-e cos& + 1 8e2
(1-o2y 72 03 ~ Ze -2 5a;
o M _  (l-e cosé& )2 o 89 siné 8e2 _ sin & (1-ecos & ) 8e2
da. (1_62\1/2 da. 2 oa
J } J

i 20-¢9) °%
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Now T is not varied when the orbit parameters are so t - to

shou.< be held constant in taking partial derivatives with respect to the
orbit parameters.

t-t = (Vi - Mo)/n

and
q
o (t-t) [-M_)/n] .
da. - da, -
J
so
0 MM MM Y
n %a 2 a.
o J
13 - -
1 3iM-M,) 1\/I:Mo 3n 8E_0
n da. 2 2E  Jda.
3 n
oxr
Mo 3M-Mp) pm Y
doa. 2% FEV oa.
J J
Setting the two expressions for e oM
we find

~

equal to one another,

1
50 (1-¢2) ' (”M‘Mo) . B8E ( oM
<7‘a_j (1-e cosé )'f‘ o
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Setting 5, 0, and M equal to ’Eo’ ©, and M_ we find

, 15 \
0 \9_90) _ (1—e2) 3 (M_Mo} OE , sin & l-e cos & 1 8e2
92 = 2 ZE © %a, 2 z 4 5a
j (1-e cos &) J l-e
2 l/?_ siné l-e éosé 2
. -ef o o, 1) e
(l-e cos 50)2 ¢ l-e2 aaj
oM
+ (l_ez)yz e = o 1 1
{1-e cosf) (1-e cosé )
1/ 3 (M-M )
_ (1-e7) e o OE sin £ ( l-e cos & +1) oe
(1-e cosé) 2K da 2e 1-e2' Baj
th
2 sin{ l-e cos 5 2
(1-e7) e o ° 1 Jde
B 2 2 e 2 a,
(1-e cosg) l-e j
1/2 ( 5M } -2 cos & +e<:os2 éf +2cos$—ecosz‘5
2 o} o} o
+(1-e7) e le
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r 3(M-MO)

_ r\8}5 +sin & 1—ecos£+l de
= oa. 2 da.
J l-e J
(i-e cosg)2
sin éf Eif:fffléil + 1 -QEL
8(9-00) 1/2 o 2 da.,
2 l-e j
5=, = (1e) Ty — z
j (1-e cos éio)
(cos é— cos fo) (Z-e [cosé-}- cos 50]) BMO
+ e -
(l-e cosg)'2 (l-e cos&o)‘2 aaj
-
Now since
r= :HZ
T (it e cos ©)
and
r= -%fL sin O
it follows that
or r OH r de _ _. 80
. - ¢ © ga.  1te cos o cos 9 5a. - sin?® (e aa.)
J J J
and
8r__tu__[-,\8e 80 || . ¥ W
‘aaj - H is‘nu 5a, TcosP e aaj H aaj
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Now

i

sin {8 ~ @) sin @ cos 6 - sin ©®_ cos ©
o o o o

cos (9 -GO) = cos B cos GO <+ sin @ sin 90

and the components of r in the x'y'z' co-ordinate system are:

r cos (0 - 90)

= r sin (0 - QO)

' J 0

~ —_
[ -2 sin (0 - 6_) + ¥ cos (8 - 0_)
X! -_-‘ ¥t = ——I-;I— cos (8 - QO) + T sin (0 - OO)
2 0
- - J

TheX ¥ Z co-ordinate system is Earth-centered, non- rotating
and right-handed with Z normal to the plane of the Moon's motion about
the Earth and directed at an acute angle to the Earth's angular velocity
vector. X 1is in the direction of the Earth-Moon line at the time of the
initial observation. Then the position and the velocity of the Moon with

respect to the Earth are given by:

T -
X .] f—p cosw T
m m m
~
X =5 =!lp_ sinw T
m m m m
Z 0
L m

— - . ) I-39




and

(—N ' ~ =
X =-W Yy
m | m ‘m
o A~ ~
X = y = w X
m m m m
7~
Z 0
m
~— -t e -,

in which W is the angular rate of the Moon about the Earth and o is
the Zarth-Moon distance.

The xyz co-ordinate system is Earth-centered, right-handed
and non-rotating. The z axis is in the direction of the Earth angular
rotation vector and the x axis is in the plane of the prime meridian
at the instant of the first observation. If N\ is the observing station
latitude (measured positive North) and « is the observing station

longitude (measured positive East), then

de h -pecoskcos(weT+a)m
X =1 Ya = pecos)\sin(weT+af)

L Zg | Lpesin)\ B

and

P“kdn1 r e Vg |

)‘id= Ya | T “e%q
Izd 0
- - - -
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in which P is the radius of the Earth and w, is the Earth's angular
rate.

The latitude and longitude of the sub-lunar point on Earth at
the instant of the first observation are L and { respectively. The
inclination between the plane of the orbit of the Moon about the Earth
and the Earth's equator is B, as shown in Figure 1. It must be specified

whether the angle vy in that figure is greater or less than v/2. Then

. sin L
siny = <5
.2 :
+1/1 - sin"y ify = w/2
cos y=
2.
- \/1 - sin” yif y= 7/2

| L

sin ($ -4) = tan L cot B

cos vy

£ v
cos -1} =
(o -2 cos L.

sinb =-sin§sin(—121--y)
sinb = -sinf cos vy

. .2
cosb = "+1/1 - sin” b

I
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~tan b

sinv =
cos(g - v)
ces v = cos b
cos vy = —=
cos D
cos p =cos (p-21)Ycos{ -sin (b -£)sin g
sing = sin (b - L) cos g + cos (b -4£) sin ¢
cos (b + v)=cos dcosv - sin $ sin v
sin (d+v) =sind cosv + sinvy cos §

xyz system to the X§¥ 2 system.

—

Ky

21

31

K2

X3z

K

o

13

23

33

The rotation matrix X rotates vector components from the
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X

cos L cos ¢

Nt N O “~ 0y 1 1 1
X 'y z system to the x' y' z' system.

of these two co-ordinate systems are shown in Figure 2.

11
KIZ = cos L. sin {
Kl3 = sin L,
KZl = cos b cos (+v)
KZZ = cos b sin (4 + v)
K23 = sin b
K31 = K Ky -Ki3 Ky,
K3z = K3Ky -Kj Kys
K33 = KKy - K Ky
%Jd = KX,
%, - xk,

The rotation matrix L rotates vector cocmponenis

r— A r— -
cos{ sint O 1 0 0
-sin { cos {0 0 cosm sinnq

_ O 0 L J L0 -sinnm cosn_

p-—

cos §

-sin §

firom the

sin§ O
cos & O
0 I

The relative angular positions
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Figure 1.
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Then the vectors s and s are

P-X,q
S
v 1 _ 1 oY -
X! = Vg {7 X '!'L(Xm Xd)
z!
_ S
and
X!
S
. ot _ ot Z _
X' = YS = X'+ L (X Xd)
51
_ S

Let x%, y*, 2% be the co-ordinate system of a perturbed orbit. The
A A A
components oi the unit vectors x*, y¥*, z* in the x', y', 2z' directions can

be found as {ollows.
. . . A
The perturbed initial position is on the x* axis, so
1k

s tha ) raalvaal | Wes A N
(3, T 82)" +da, a3J X% = (a; +A2)x'+4aa, y' +Aa;z

and, neglecting second and higher order terms,
A ' A Aa.? A Aa.3 A
x% = x' + ~ v o+ S z'
“1 1

>

(2]



— A
The perturbed angular momentum vector H* is in the z* direction.

- e /‘ . -t 1 T T, A ) /\l
=% = H¥k.z¥% = h:,:l x! 4+ H:;‘ Yl + H:,:l Z
X Yy Z

in which

Hex = a¥x ax - Roa%
Hego=afap - af ag

H* = a¥ a;’i - a’f ay

MY
1]
"
)
U

" a% e

an
ax = a. + Aa.
1 1 1
Then, "
H¥%, 5 He A Hx, .
z% = X x'+ y'+ 2 g
Bk Ik e
Now
L2 I e 2 w2
Hx" = (H”}'{l) + (hi‘;x) + (H'z‘:l)
so
H* = H + second order terms
Thus,
M _ ag Aa3 },}l . ay Aa3 a, Aa6 /\, +21
= 3 & ¥
A A A
y* is the cross product of z* and x*, so
/\* _ -Aaz ;’é' N A, ) ‘a4_ Aa3 -2y Aa6 gl
y - a’l Y H
Let v% denote the perturbed value of r at any future time, and
let .é\
x% = x' + X inwhich X= ) 2% ap
k 0 a. b
i=1 i
6
yE=y'+ Y in which Y = Z ??Z Aa,
i=1 i
6
zH =z' + Z in which Z = Z 8z A a.
i da. i

Next, let xé, y

Py

', z! Dbethe x| y', z' components of r¥. Then,
P P -



P
A ! A I A A
= X¥ ¥ e x' +yk oy x'+ 2% g% x!
Aa Aa
= XX - Y' 2 - z% 3
! !
and
T !
xp x _ X y'+Y Z.\.a2 _z Aa3
Az La a, Aa a Aa
J J 1 1 J
Letting Aaj approach zero, X/Aaj becomes 8x'/d 25, and so on,
so
o x' o x' .
D . - Y
9 a. 0 a. a 2j
j J 1 !
In like fashion
oy! oy’
Yp = 4 + —}i!- 5
g a. 0 a, a 2j
j J 1
0z' a. x'-a, vy
p = 5 3 4 Y 6 . + ll" 5 6.
Baj H 3j ag h]
and
o X' ox! ‘4
—_— = - 5.
ga 8&,3 a.l 2_’]
. .
9, g 5o
o aj oa, 2, 23
ot - | . .
0z _ 35 x'-a, v, - 5
SaJ H 3j ag 6]
Then,
rax' ‘1 r 0 (6-0 ) )
P ! o _ or X'
TE V. Taa o tees (9-0,) go- - 83
J J 1
Sy’ 8 (9 -0)
D -1
R! = | =] =| x' — +8in (070 ) 0L 45, 2
i i 35 J
1
oz’ A . I-46b
2y 35 i t %5 =)
5 J_J 5
Ve -




and

9%! ( 7 N
b : Y
— - sin (@ - 8 ) + cos (@ - © - 6, 24—
oaJ { }1 ( o) { }2 ( o) 2j a1
oy! 6{6-0) .
1 6H H or . ! o X!
[ — = - - =
Ry =l 52 7 {r da Z Ba. % B }cos (@-8,) +62j a
j r J J 1 1
9(0-0 ) .
‘ H or .
¥ {- — 53 5o } sin (Q—OO)
/2
oz! : a55<' a, ¥' ‘e u
da 3j H 6j ag
bl P S —
Finally,
22 =—l—{X‘TR‘+[X'-—:S— X']TR'}
aa.J s s j s s s 3
and
N
X 85 (T) 85 (T.)
c, . = Z P
i,j da. ga,
=1 : J

in which Tp

being zero at the initial measurement.

The covariance matrix of the parameters is simply

| Cui)

N

(p=1,..,N) are the times of the N measurements, Tp

in which 0" is the mean square Gaussian error in the measurements.




Figure 2.
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APOLLO NCTE NO. 83 H. Engel
18 July 1963

USE CF RANGE AND RANGE RATE DATA

Range Only

From Apollo Note No. 43, if the measured quantities, f(t), have

a fixed bias, b, and a zero mean stationary Gaussian noise, n(t), impressed,

then
fm(t) = fc(t) + b + n{t)
and
2 -1 ..
cov (ai,aj) = o (NC) i,j=1,...,7

in which o~ is the variance of the Gaussian noise,

fc(t) = fc (t, al,...,aM,b)
. N df_ (t,)  Bf_ (1) o .
i’j - aal oa. 1J= 4 ’
k=1 J
N 8f_ ()
C k 7
Cos = Cog= Yy —2 j=1,...,6
k=1 J
and
C, 5 = N

Now, if the cuantity measured is the rance from the DSIF or
s q Y g

MEZFN station to the vehicle orbiting the Moon, then from Apollo Note
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s 9s  _ T . s
9s. oa
J J
- 5r
= S —_—
FEW
J
or
e p o 8s _ 1 < 8%
da. ~ da. s oa, °
J J J
Now, expressions for s, s, and (,?ar are available from Apollo

Note No. 82, so it is simple (in theory) to dttermine the covariance
matrix of orbit parameters and radar range bias using this note and

Apollo Note No. 82.

Range and Range Rate

From Apollo Notes No. 43 and 82, the likelihood function of the

data 1is:

= exp (- L)

)"_2—_ N N
- .

in which N1 is the number of range measurements, NZ the number

of range rate measurements, and

: AII. ~ 2
Zj = —— !Rﬂ(k)-R (2, k) - b
20-° k=l | % ¢ |
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To obtain the covariance of the most likely ai's and b, set Baf/aai
and 8 £ /0b equal to zexro, and, assuming N,y and N, are sufficiently great,
obtain a set of seven equations linear in the random perturbation quantities
‘A-ai and &,

This leads to:

. T . '
. N, BR_(x) BR_(K) . N, BR_(2) BR_(4)
Ci,j = 0_2' Z aa.i aa., + 0_.2 Z aa‘ aa” ;1!J=1:'vo,6
R k=1 J R =1 1 j
. 1\% BR_(K)
C . = C = — —————e
7) :7 2 aa.
’ ’ or =1 J
N
C?-,? = 2
R
and

i,j=1,...,7



APOLLO NOTE NO. 85 J. Holdsworth
22 July 1963

THE ZRQUIVALENCE CF DATA PROCESSING SCHEMES
IN A LINZARIZEZD ERROR ANALYSIS

The purpose of this note is to demonstrate rigorously the sta-
tistical equivalence of certain pairs of data processing schemes under
the assumption of a linear propagation of random errors in the estimators

of certain orbital parameters.

First, we consider that we are observing a time series Rm(t)
whici may be represented as:

R {ty = Rc(al,...aé,t) + n(t) (1)

where n{t)} is a white stationary zero mean gaussian process with
Yariance o—nz. We assume that we know the functional dependence of
RC (al. -2y, t) on the orbi‘t parameters a;. Then, on the basis of N1
pileces of data Rm(l), e Rm(Nl)’ where N12 6, we compute the
maximum likelihocd estimates 31, ve e é() of the parameters TS

Apolio Note No. 43 gives a method for computing the covariance

mairix of the errors in the estimators of the parameters as a function

of the noise variance o~ and the number of independent observations
Nl' It will be recalied that the analysis in that note was based upon
the assumption that the number of pieces oI data N, was sufficiently

large so that the following linearization was valid:
. v .
. . OR
A Ao c A
R CIPRRE aé,t)—- Rc (al,. .. a6,t) +§,1 Bai (al, .o aé,t) Az, (2)

where

A . . .
Let Aa denote the column estimator error vector waose components

A . . , . \
are: a; - 2, fori=1,2,...6. It was shown in Apollo Note No. 43 that
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the covariance matrix of the estimator errors is given by:
A 2 -1
Cov (/_\.a (N1)> =0 C = (N, (3)

where the i, jth element of the matrix C is given by:
Ny . .

oR OR
c

C. '(Nl): (al,..aé,tk) 8aj (al"'aé’tk) (4)

Furthermore, if the parameters were estimated on the basis

of N.i + NZ observations we would have

Cov {Aé (Nl-i—N

2 -1
iy =0zt CT (N #N,) | (5)

where:

N1+N2
aRC aRC
Cl,j (N1+NZ) = aal (al;"'aéxtk) an (al,..aé, tk)
k=1

N, )
BR_ R
= Z 5a, @y, -.a0,h) 57— (@, . 24, t)
k=1 J
N, az'ac aR .
+ Y e (al,...,aé,tk) 5 (al""aé’tk)'_ (6)
i J

k:Nl-'rl
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, we have made the depencence of the covariance
matrices upon the smoothing times notationally explicit by writing

Cov (./_\.é <Nl)>' . etc.

Now assume that 1\ observations are made first and that an

e.sti*m tor vector /\ (Nl) is computeci from the observations Rm (tl). oo
Rm(tNl), where the ith component of the estimator vector é (Nl) is the
maximum likelihood estimate of a.. Then it follows from what has been
said that the covariance matrix of the estimator vector :/3\, (Nl) is given
by the expression in (3).

Next assume that the same parameters are to be estimated from

I, obsexrvations . (t )
N, obsexrvations Rm (‘CN1 +l) , Rm(N+N'

> without the knowledge

of (¢, ... R_ (t\, ). Denote the resultlng estimator vector based
m 1 m 1\1

1D Oz t e (NS ). £ if N, i ffici

upon R ( N+ 1) R, (tN1+N2) by 4 (1\4) Then if N, is sufficiently

large so that the linearization in (2) holds, we may write:

A 0 2 ~-1
Cov (Aa (N,)} = 0" C77 (N) (7)
where: N1+N, . .
= 8R_ 8%
i, Mol = Z_J 5z ) T W (8)
k=N, +1 ’ J

ot

s . A
It is imporiant to note that the estimator vector a (NZ) was com-

N

outed without assuming that the computed value of the estimator vector

P> *d

(Nl} was known and conversely. What we wish to show is that know-

o>

. , v e A

ing only the computed estimator vectors a (N ) and a (N,) allows us
to form a new estimator vector of the parameters such that the
resultant accuracy is tne same as if we were able to make the total

number, ‘Nl-i—N of observations R (tl,. “os R (s

2’ m N, R Ox ek

R ( N -‘.YZ} first and then estimate the parameters.

. A
To show this, we assume that we have computed a (Nl) and

cea - . . . A
a (N,) as cescribed above. Xnowing the estimator vectors a (NI) and

-
w

(93]



g (NZ), we deline the new estimator vector @ (Nl’ NZ) by:

o -l

¥ (N, N,) = Cov (a4 (N +N,); LCOV-I (a3 ()33 B vy + CovTHaR (A |

(9)
Note that the new estimator a (Nl’ ”\IZ) is obtained from linear operations
., A
on the vectors a (Nl} and é 2) and that & \N, , N ) depends upon the
observed data only through the estimator vectors & (\T ) and 4 (N 2). The

proof of our assertion will consist of showing that:

Cov (A’éf( > N,3) = Cov (Aé (N, +N, ) (10)

-

If we let a cdenote the column vector whose ith component
is a;, then subtracting a irom both sides of (9) yields the following

- . ~NS
expression for the estimator error vector Aa (Nl, NZ).

A
al (N,,N,)= Cov (A& (N +N,)) [COV (a v )3y af (N3 + Cov 1(AQ(NZ)A’§(N2)]

(11)
The covariance matrix of the estimator errors A% (N., NZ) is
i
given by:
R - X — r o~ . - £, ,‘T.’
N = N 7 Aa IN \ i
Cov \l__\a \;\1,4 Zj/ LAa (:\l,hz) \ c&\l\l,hzlj | (12)
wnere T cenotes matrix transposition and E is the expected value
operator which is integration over the observation space w1..h respect
. A . s
to the joint distribution of the coz nponents of Aa (\T } and Aa (NZ). Using

tae symmetry of the matrix Cov \Aa. \1\1+ N >we may explicitly write:

]‘," . . -1 A '14’ M ; \"—‘ '\ W\
\,ov\Aa (N.,N )/ = Cov (Aa\Nl-H\Z)) [Cov (Aa(Nl}) + Cov \Aa\NZUJCOV{Aa(Nf‘%i/

(13)

where in (13} we have used the fact that the maximum likelihood error
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Aoos . , s . .
veciors Al\ ; ), Aa‘\l\'z are independently distributed with asymptotically
mulitivariate r“,.':::al Gistribution with zero means so ‘..at terms of the

*OI"“.
[Cov { ('\T1)/Aa.’\ )(A"' 7:) T cov™ty ( A } =0 (14)

thus yielding (13}.

However, from Eguations (4), (6}, and (8}, we see that:

covt [k (N1+N7)] = cov [ak () ]+ Cov™! [AQ (N, (15)
so that
Cov (A%¥ !N..N = Cov (Aé (N,+ N ‘) (16)
\Ba i, 1 2'1' 1" N

which proves our assertion,

Intuitively we may say that a priori distributional knowledge
zined irom »rior observations has a modifying effect on our later
cCatz so that the eifective sampvple size is increased. It is worthwhile
to note that i txe noise is auto-correlated, tiien quantities such as the
expression given by (14) will not in general vanish and our assertion
will no longer be true.

Next we consider the following situation. We assume that
chbservations are made as before over a given interval of time =--
say R__ (t.},...R_(t,,). On the basis of these observations we wish
1o estimale the vaiues of the components of the position and velocity

vectors at some initial time t = 0. Let these quantities be denoted by

The value of the gquantities Xi(t) at an arbitrary time t depends
upon the quantities x. (O’,. .o X, (u} and conversely. Thus there exist
relations oi the form:

x,(t) = £, (xl(O),...xé(O)it> i=1,...6 (17)

/X 1L }x/“
\.-./,... ij

1]
i
ot
Ul



orizinally estimated the quantities X, {C} firom our

chbservations we may use (17] to predict values for t“e %, (t) based

A}

s w3 A A n +
upon the estimators X CY...x.(C)., Because of errors in the estimator
) ]

5
N A . . \ . - -
state vector x (C}, there will also be errors in the predicted quantities

N Land AR .
xl(t). .o kz(tl. Since:

S .
azi
Va4
AF(D) = ) mey A%,(0) 18
1() I (O) n( } ( )
n
=1
Then: 6 6 .
< of, 813.
AX. (t) AK, (t) = Ax (0) Ax,(0). 19
k n )
=1 k=1 ,
Trom (19) we see that the predicted covariance matrix for the
lacd
quantities xi(t) may be writt
(A % A A T
Cov (A% (t)y= J Cov{ax(0)) J (20)
Bfi
where J is the Jacobian matrix whose i, jth element is PR
J
On the other hand, instead of first estimating xi(O) from the
I - LI R PGPS -1 - T e :-'! s oo :
cata and then predicting ahead to the Xi(” on the basis of the estimators
""i{ Y, we could have estimated the xi(t) guantities directly {rom the data.
T 1. A ! o z f el b)
Let these direct estimates be denoted by x.(t). We wish to show that

i
under the assumptions of a linear propagation of errors that the

two metnods are eguivalent, i.e., that

. e N
Cov (A x'(t}/-; = Cov (Ax (t)) (21)
To do this we recall that the i, jth element of the inverse of the

N )
A . oR, (t) 3R o ()
g . = L Z _ (22)
3] O"A Ox. (L) 6x.{tj

el k=1 * J

~% PR A

3
Cn the cther hand, from Ecquation (20}, the inverse of Cov (A X (t]; may
be writlen:
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-1 ~ \ T -1 A av N -
Cov (A X {t} ;= {J7) Cov (Ax (v),; J (23)
Since the inverse of the Jacobian matrix is the mairix whose
8gi -1
i, ;th element is ETAG) and since the i, jth element of Cov (Ax {0}} is
OX.\L
N . .
oR (t 6R _(t
1 c( k) e ( k)
0_2 8 x.(0) 0 x.(0)
k=1 : J

-1
then it follows that the i, jth element of Cov {A/Sf (t) } may be written:

N o . 5
og OR (t_} BRC(tn) abm 24)
0 x_{0) ox.{t)
m J

O
—

-

I

IH

48]
™1
o
]
Q>

w

s
<

Qo

W
=~ |0
Sl

However, for fixed k, we note that

% o) g BRC(tn) _ aRC(tn)
[ - o 4
/. | 8xi\.,) BXZ(O) 6 %, (t)
and (25)
6 = [+
Z agm anc(un} _ Rc (t.)
ox. .ty ox_ (G Toox.T)
m=1 t = J
A ~s
taus: C. .= C. and
i, i,
o X1 Vo 14 A { %
Cov (Ax \t)/ = Cov Lx {t) J (26)

which completes the proof of equivalence.
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APOLLO NCTZ NC. 93 H. Engel
14 August 1963

UND SYSTEM COMPUTATION CF
L=ZM ORBIT

()
O
&

In the various schemes for ground support system computation

of the LEM orbit on the basis of DSIF or MSFN radar data, there is the

uestion of whether the computations can be performed
rapic’y encugh to be of use. This note is intended to provide an answer
to the question. .

The conventional tecinique employed on deep-space shots is to
acquire data Z.r a lcng time, and then find the mean square error between
the observations and the values cf the quantity observed calculated on the
basis of assumed or previously determined values of the trajectory
parameters. Tha parameters are then agjusted and the computations
repeated. The process continues until the mean square error is suf-
ficiently small or can be reduced no further. The computation z.cw

ciagram is as iollows for one kind of measurement only, say, Dopgier

velocity,
Given a priori values of orbit parameters Byyeee, g
Cbtain daia measurern : Vl, \/‘,,...,’\/;,\I
Using a priori value:s of parameters

Compute expected values El’ EZ’ ce e EN
of measurements, and 9E, /aaj, e, 8E\I/8aj by
4 PY

integrating the differcatial equations oi the orbit,

N
H jos 2 — 1 _“':‘\2
@ = Compute o = = Z (Mi )
i=1
N s
8o _ 2 M. -E - U ana 2E)| JE
9a. N z i i Z k 8ak] da,
] J
i=1 <=1



Is o~ small enough or as small as possible ?

S =
2nda
im
| yes .
no
7 ; .2
v s
. . . oo ..
Cn the basis of o= © and = modify a.,...,a
ge. 1 S

J
Using these parameters compute Ei and 8E /8a (i=1,...,N)

- e o

by integrating the diffierential equations of tne 0¢ bit.

In this method of computation the computations up to the first
yes-no cecision can be performed concurrently with the receipt of
data, but the computations necessary for the remaining computations
can not ce insitituted until all tne data iz available. As o result in the
case cf deep-space shots, there is a long delay between » :ceipt of
tze last data point and determination of the orbit parameters.
According to JPL, the time required to perform an iteration is
currently 20 tc 25 minutes, and might possibly be reduced to 10 minutes
by reprogramming. Two or three iterz“ions have been found necessary.
Turther, the number of parameters considered by JPL is far more than
6, since the speed of light, the mass of the Moon and other quantities

are considered as parameters. Still furii:r, the number of observations
a

Assuming that the gravitational field of the Moon and the ephemeris
of the Moon have been determined to sufficient accuracy from previous

4

g that {rom burn-out to passing out of

12}

«unar orbiting shots, and assumin
sight behind the Moon tekes only 30 minuies, so that cnly 30 one-minute
Observaiions can be made, the wume required to periorm the necessary
calculations for orbit parameter determination should be reduced by at
least an order of magnitude. TUse of the IBM 7094 instead of the IBM
70390 will reduce tae time by almost ancther order of magnitude because

t-in couble precision operations.
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Since 30 obsexvations is not & very large number of obe _rvations,

it is not desirable to gain additional time for computation by decreasing
the number of cbservations. Cther means Ior reducing the time required

= S
for computation after receipt of the last data point can be found. Two
approaches to this prceblem are possible.

e first approach starts the iteration procedure at, say, the
27th obsexrvation. The starting point for the second iteration,which uses
28 data points, is the orbkit parametiers determined in this fashion. In
like manner the third iteration uses 29 observations, and the fourth 30

iteratio:&s, s0 the computations are completed witz just one iteration

The second approach uses the Kalman-Schmidt method of
varameter determination. This method is described in Apolio Note
No. 88. The Xeiman-Schmidt method employs a nominal or reference
trejectory that has been pre-calculated in order to linearize the problem
and to reduce the amount of real-time computation. If the actual trajectory

is ''ciose enouzlk'' to the reference trajectory, the Kalman-Schmidt method

O
[
83
len

e employed to produce orpit parameters witzain milliseconds aiter
tae finzl observation.
g the lengthier procedure, the estimated time ito find improved
ortit perameters aiter the last observation is of the order of 3 seconds
using range rate from one station with no biases, or 7 seconds using
gle from three stations including biases in range
hese computation times will be increased substantially if triple
precision operations are required instead ci double precision 0perations..
The computiation times will increase siigatly i more complete
expressicns for the gravitatioral field of the Moon must be employed.
The time to compute guidance instructions is negligible com-

pared to tae time reguired for orbit determination.
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=ncke's method is suitable for orkit calculations when zar
cravitational fields of other

(g
o
bodies can be consicered as small perturbations. Thais Is the case

Let R

initial conditions of position and velocity, considering only the radially

il
7
G

symmeztric, inverse square component of the Moon's gravitaticnal field.

in which w. . is the gravitational constant of the Moon.
M

Let T = 7 (t) be the actual motion relative to the Moon, and let

ne>

-y

el

.
.

:

3

|
1
'
Z
w

H

and
= .x)\, s
&

in which P is the periurbing acceleration.

Letting _
Al - \? |

Q = - ——-—11 -1
J

it is found that

R

and

P

"
t
.
2
)
©|
1
H
6]
D
]
+
oY

be the orbit relative to the Moon resulting from’
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wahere

]
Nz w

For the orbits of interest, Q is a small quantity, R being of the
order of 1.75x lO6 m and r differing from it by at most of the order of
10%m, sotat |Q|<3x107

Further, the first few terms in the expansion for F (Q) are given

-

oy

Q3 - 3132 . .

[€8)

PR}

. . . . -5 e rn -
nd since Q is of the crder of 3 x 10 at most, it follows that the

[\

-

ratio of the third term to the first term in the zbove expression is

9

between U and 5.25 x 15 7. Still further the ratio oir F (Q) to o i
Sl
rF(Q) e r3Q_°3r R
P p P
T 9] 2
<5 |7
<"f.—
- .
< 5.7x 10
aence
35 .3
T c -3 -9
= < 5.7x10 x 5.25x 10

-11
< 3x10 1

o~

(g8



Thus, the thi

H

d and succeedin

g terms in F {(RQ) may be neglected, and
: o 5
The perturbing acceleration P may be written as
P:Pl-f-:‘z-f-rs + 4
in which
=, = results from the remaining _...ion of the oon's
4
gravitational field.
P, = results from the Earth's gravitational fie.d.
P, = re:cults from the Surn's radiation pressure.
-~
2, = results from the Sun's gravitational field.
The g

1

ravitaticnal potentia

of the Moon, in excess of its radially
uare portion, may be expressed as

- A, + A, -3 1)
; 177273 /

Z
which G is the aniverszal gravitational constant, Ai is tae moment
inertia about the princ _ .1 axis u, and

i : (A 2 A

I = —— (A, u] TA,u

/R St O
by

LiLe corresponding acceleration has compo

nents

oS




+]
L
[¢]
e
[}
H
o
jo
v
o8
Yot
]
Q
o
&)
ks
0]
[@]
o
o}
by
ot
9]
¢}
-]
)
”
o

o the difierence in
g from the Zarth's gravi-

m il Al £33 Ll S 1 1 r T - N+ T
cational field. Letiing X Ty Pe the vector frcra the ZTarth to the Moozx,
A
B

i

then for the radially symmetric,  inverse scuare portion of the field,

Z —_
=M Renm =M

. . . . . - ~=3 ..
Coserve that I-'/Rh, 1s of the order ¢i 5 x 10 or less. Letting

STurther, w/R.,, is of the order cf3 x 10 ~ m/sec “. Then
—— sV
| R T
S —_ N\ r - -
= e i T . YEM / 3 15 2 35 3
T e e— | Bare T £ - = a T (o4 - =~
Tz Z P R, Roemny 2 13 io
R~ PNV SVL \
-
t
P !
B 310 o |
[ e " e e 0
128 "4 5
i
Ve ~ ~ 4 - -
o ) } -5 3 -2 15 -4 35 -6
= — 3 x 10 }3:{13 +1 (- ——;— 10 + b——lO isre 10
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so P, can be represenied adequately
— 3o Ry
= z X
=, = 3 @

r'—‘"\~w
L 4US,

M, 2 T2 T Rawm, 3

Ze eifect of the higher order terms in the Earth's gravitational

nit is of the order of £ x 10~ dynes/m”. With a L=M rass of 10 kg

and a projected area of 10 m” | the resultant acceleration is of the orcder
fA-l2 2 . = o .
of 10 m/sec’, and may be neglected. Thus =, = C.

3
The acceleration of the vehicle relative to the Moon due to the
1

PR

Sun's gravitational fie

= _ Mg " B Rs'v-+r 3 15 2
T T LTOIERL T TR, T et Tge e
‘S_‘.\/L- L SuVa Savy

in which R ., is the vector from the Sun to the Moon and ¢ = r/R

] S T 2 . . SMC
Now . /R4 is of the order of 10 m/sec anda the guantity in the
lJ‘ b4 Y

brackets has magznitude less than unity, so for ail practical purposes
= (<]
2, =0.

lel eguation for the unperturbed motion of the

venhicle is most easily solved in the manner indicated in Apolio Note

<4e so.uilon of the differential equation for the perturbation
N Tt P PRTr By T Ry~ o~y
must be obtained by numerical integration. The meiaod of Runce
o (=3
oo VL - Tma oA s o ~— «Ya o P o= 3
and Xutta can be used for the first few points, and then the methods
£ s ST - ~ .
cf Adams and Moulton. According to JPL TR 32-223. one minute
o ’
N ~F o £ - ~ - N £ o e N “~ v, 3 - D 3 - "
intervals of Uime may Le used for the intégration in tae vicinity of
toe Moon. The ecuation to be integrated is:
= P -
- g - TN 1Ay =
p = T ! P T X \‘,...,/J + ..3
-t L

o~

(2]

J
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hls equation may be rewritten as a set of simultaneous first

Iy

order differential ecuations by letting

Ui
[
1l
el
s

v
U e ne>
-

">

e

o
E, = by
Then
. =M
M
L n = FR. F(Q + P i=1,2,3
gl+3 3 g1 1 ( ) i s &
R
5. = &, i=1,2,3
gl gl‘r’3 ’ ’
The initial conditions are
& = 0. i=1,...,6
L"1, 0 ’ ’
The soiution is staried using the Runge-XKutia method, using
— L1 1~ [} \
= k +2k + 2 + k 6
g1,‘.+l gl,n V1 i, 2 i, 3 1,4’/
.

SR : L3
i, 2 itTn , i, S, = o,
1 _ el Tm I I > ad - - -
X. 3 = ﬂgl [ +A;/Z, gl . Ty 7/1’.,..., l_',é - 1\6 1 &y
i, , X ay & 5 a ,
.
1 — 3 & [ Eaal N I fod I P 3,
K = L4 T Wy, - T K P T, 4
i, 4 2i‘t'n gl,n 1,3’ ®5,n 6,3

4
o~
O~



in which
h = T - T
n+1 bod

1>

is independent of n.

[N

an
The steps of the Runge-Xuita method are repeated five tirmes
to obtain initial differences for use in the methods of Adams and Moulton.

These differences areV 9 £, in which
i, 5

v m+l A wm m
v+ w_ =V w -V w
In the next and succeeding iterations, the method of Adams

is employed to obtain first estimates of gi and then the method

,n+ 1’
"of Moulton is applied repeatedly to obtain better values for these
quantities. It is assumed that three iterations each time are sufficient.

In Adam's method

_ 1 5 2 3 3 251 4 5 5
ins 158 q ¥RtV VT 5 Vit =5V +5557 V7 |8,

m
-
o
£
-
3
Y
<
O
for
o
o
o]
e}
[ &3]
3
0]
et
et
F
@]
£,
b
b
a
[N
8
g}
H
O
<
[¢]
[N
<
Y]
[
[o]
(]
e}
Fh
u
J_- B
-
(R
w
O
o
ot
(V]
e
o]
()
[N
iy
4]
@]
8

1 k) - ;. 1 1

- crminly Aoea 1o 4 alr a7 S = Van o = N g s
&L woich Cela is to be tazken, the computed values of the observed quantities
are cetermined. Considering oaly range rate Irom one station as an
S e e T -~ ~ - o B T TR N S Ny ST £y H 3 +5 - +
€Xaimnpae, ne expected numter of Doppler cycles in the one minute of
icn mus: b suited. zllowing for <h tions of *h hicl
L0 INUST o8 Comyuu\,\., C..J..AOWlLLb 10T The motidns 01 tae venicdie
mam 2 m o aS Aenmmsm =7 S vl tpmov ot e a

and stallln during vae siznas transit time.

Using a co-ordinate system fixed in the station, a signal received

by the station at time Tn must have beexn transmitted by the vehicle T
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in wkich s (
nal is a re~trans-
mitsal of a signeal the vehicle received from the station, it must have
Seen transmitted by the station at time T - 2 7_. Any relativistic
corrections necessitated by the vehicle ofi-setting the re-transmitted
frequency are neglected here. T, is determined by solution of the

eguation:
c-r:lg(T?\-'.‘”) = s (T_-7_)

In the vicinity of T s (T} can be expressed as a guadratic

in T. Let s_ denote s (T_). Then,
n n
s - s S -2s +s
. \ n +1 n-1 n+1l n n-1 2
s(T_ -7 )=s_- > T, > T,
- “d Al - Fe
* 2h
2
=s_ +b T tc T
n n n n'n
and
2
cT = s +b + +c T
n n n'n non
so
=y 2
(¢ ~Db_} - (c-b_ )Y -4c_s
o n o
‘n ¢
pot
c -2 / e«cns
n A n
- Zc_ L- L (c b\Z
al n/
c-b 2c
o po! L n
- Zc Y
pol {c -b_})
s
f Joy
)
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Oor, more accurately

Letting f be the transmitting frequency of the station, the number

of cycles received by the sta'ion between 'I‘n and Tr is

§Y

4
+1

m - — AY . - —] ~- 1, q - od
f [(*ni-l 2 Y (’I‘n 2 'rn) ] and the number of Doppler

cycies between this and the signal transmitted in the interval
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and iet v_ be the measured value of this quantity. Then
N
2 1 ( ™2
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is to be minimized by choice of the six orbit parameters &.,..., ag-
his is accomplished by computing Pi and G| ./‘c)aj for the assumed
set of six orbit parameters, and setting 8 0—2/8&'j ecgual to zero.
Thais gives six simultaneous linear ecuations for estimates‘ of the
changes in the parameters to minimize 0—2.
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Inverting the C matrix, we find
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The quantities 8{—‘i/ aaj to be used in the asove equations are
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Thus £ ./6a. can be compuied. In calculating 8s./%a, and
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ire computation repeated.
he flow diagram for the coranputation could be as follows, although
in practice a more eilicient arrangement might be found. This flow

gram suffices for determining computation time.
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In the above, the notation a + b stands for a x 10b.

In addition, several values of the Jacobian matrix axi (tj/oa,
were checked for t equal to one-half period and were found to be correct.
Further, the covariance matrix obtained using all the Ci’ R and Ci’ R
with R = 15 m and o = 3 cm/sec. were checked for reasonableness
and found to be very nearly equal to the estimated values.

Computations Without Boost

The following computations have been performed, and the

results are presented graphically. In all these cases the parameters

used are:

a; = 1,7525 x 106 m
a, = 0 m/sec
ag = 1.70172 x 103m/sec
g = 0°
n = 180°
t = 180°
w, = .7291160 x 1074 rad/sec
w = .42360 x 10'6 rad/sec
m

6
Pe = 6.3781 x 10" m

8

Pry = 3-85x10"m
b = 4.896 x 1012 m>/sec?
L = 15°
2 = 90°



These conditions correspond to a vehicle at perilune of a
Hohmann transfer from 8 n.mi. altitude to 80 n.mi. altitude, the
nominal lunar rendezvous maneuver. Perilune is on the Earth-Moon
line, and the orbit of the vehicle is in the plane of Earth-Moon
rotation.

The orbit period is 116.2 minutes. Half a period is 58.09
minutes. Through a minor error, the time used for prediction of
errors at time of nominal re ndezvous was 59. 08 minutes. This
has a negligible effect upon the results of the computations since

error in position and not position is calculated. Error in position

is a slowly varying quantity, while position of the LEM or position
of the LEM relative to the CM/SM is not. The error was discovered
early in the computations, but because of its very small effect and
because of the desire to obtain results in time for the final report,

it was not corrected.

Three stations are used

Station A o
(latitude) (longitude)
Madrid 41° -4°
Johannesburg -26° 28°
Woomera -30° 138°

Information matrices for range and range-~-rate from these
stations have been computed for 1,4,9, 16 and 25 successive 1 minute
observations after the initial conditions. The Jacobian matrix for
computing the errors at rendezvous was computed for 59. 08 minutes
as described above.

Using R = 15 m and R = 3 cmm/sec for one minute observations,
the covariance matrices of errors at 59. 08 minutes have been computed

for the following conditions.

12103



Stations Data T(_)tal Ob?ervation Remarks
. Time {minutes)
M J W R | R |A priori 1 4 9. .16 25
X | x |x X X IxXx | X} x
x |x X X | x |x x Note 1
x X | x |x x Note 2
x x X |x | x |x x Note 1
X X | x|x x Note 2
X X X |x | x |x X Note 1
X x x X X Ix|x| x Note 2
X b4 X X X | x|x| x Note 1
X X |x{x| x Note 2
x b4 X |x |x|x| x Note 1
X X | X |x| x Note 2
b4 x X Ix | x|x]| x Note 1
X X x X | x x| x Note 2
bd X X X |x | xX}|x] x Note 1
X xix| x Note 2
x X X (x xjix| x Note 1
b 4 X |xi x Note 2
X b4 X Ix |xixi x Note 1
X x X | x|x} x Note 3
x x x | xix! x Note 4
Note 1:

A priori data
3

o, = 0, =0, = 10"m
1 2 3
o, = o =0 =V10 m/sec.
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Note 2:

The number of minutes of observations to be able to determine

ay through ag depends on the number of stations and whether range,
range-rate or both are used. The total number of independent

observations must be at least 6. For this reason, the covariance

matrix of the errors at rendezvous starts with other than 1 minute of

observations in some instances.

Note 3:
A priori data

o = o =0 = V10 103 m
21 ) a3

c, = o, = o, = V10 10 m/sec.

4 5 6
Note 4:
A priori data
4

o—a = o—a = o-a = 10" m
1 2 3

o - o = o =V 10 102 m/sec.

ag 2g a7

On the basis of these error covariance rrlxatrices o O and
o, have been plotted, as has (O'X2 + 0'5 + o—z2 ) /thich is referred
to as the RMS error at 59.08 minutes.

Further, a major portion of the error is in the y direction
(along the direction of motion). Now, the CM/SM is in a circular
orbit, and the LEM is near apolune in a near-circular orbit. Thus,
the relative motion is in the y direction, and for small errors in
velocity is approximately 29.7 m/sec. As a consequence, a short
time before or after the nominal rendezvous time the error in the
y direction becomes zero while the errors in the x and z directions
remain essentially unchanged. The RMS time between nominal

rendezvous and this time of minimum miss is o-y/29. 7 seconds
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and has been plotted for those cases in which the velocity errors are
small. The corresponding minimum RMS misses have also been

plotted.

Computations With Boost

Additional information matrices corresponding to range and
range-rate measurements from Madrid, Johannesburg and Woomera
"at one minute intervals from 17 to 25 minutes has been computed;
so has the Jacobian matrix axi/ E)a.j corresponding to 16 minutes.
With these additional matrices, the following problem has been
solved, according to the method outlined in Apollo Note No. 95.

The vehicle has the orbit parameters described under
"Computations Without Boost, " above. The vehicle is observed in
range and range-rate from Madrid, Woomera, and Johannesburg
for 16 minutes. An orbit correcting boost is then made with RMS
errors of 1.0 m/sec. in the x,y and z directions. The actual boost
is assumed zero; this does not substantially affectthe errors in

estimated position at future time. Then the vehicle is observed

for another 9 minutes, and the error covariance matrix at rendezvous

From this the RMS errors at 59. 08 minutes (1250m) , the RMS

difference between the nominal time of rendezvous and the time of

computed.

minimum RMS miss (32.4 sec) and the minimum RMS miss { 790m)
are computed.

In performing the calculations for determining the errors with

boost,it has been necessary to 'fool' the program to obtain the desired

results since the modifications to make these computations simple and

routine have not yet been compileted. At present these computations
require several computer passes performed at least a half day apart,

with a consequent lengthy throughput time.
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PART II: FAR-SIDE RELAY

INTRODUCTION TO PART II

Communication with the CM/SM or LEM from Earth is inter-
rupted while these vehicles are behind the Moon. Some of the critical
mission phases, however, occur on the far-side of the Moon. These
include injection of the CM/SM into lunar orbit, rendezvous between
CM/SM and LEM, and injection of CM/SM into return-to-Earth orbit.
It is desirable to be able to communicate with the Apollo vehicles at
these critical times.

This can be accomplished by using the S-IVB as a radio relay
vehicle by properly boosting it after separation from the CM/SM so
that it is within communication distance of the Earth and the vehicles
behind the Moon during the time from before injection of the CM/SM
into a lunar orbit until after the CM/SM is injected into a return-to-
Earth trajectory.

Narrow-band communication or radar requirements are dis-

cussed in Apollo Note No. 35, Lunar Far-Side Relay Technique -

Basic Radar Considerations* and in another report. a7 Apollo Note

No. 44, Back of Moon Relay Trajectories* starts the search for suit-

able trajectories, and further treats narrow-band communication

requirements. Section 7 of Apollo Note No. 87, Rendezvous Aids-

Far-Side Relay* Apollo Note No. 90, Further Examination of Far-

Side Relay Trajectories®*, and Apollo Note No. 97, Minimum Boost

Velocity Requirements for Far-Side Relay*, examine further the

boost ¢ ilities required of the S-IVB for this purpose.
a/ Bissett-Berman Corporation Report C60-6, DSIF Capability

for Apollo Guidance and Navigation.
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APOLLO NOTE NO. 35 H. Epstein
21 March 1963

LUNAR FAR SIDE RELAY TECHNIQUE -
BASIC RADAR CONSIDERATIONS

This note deals with some fundamental radar considerations
involved in a relay technique suggested by Mr. L. Lustick. The purpose
of the relay is to make possible communications between a spacecraft
on the far side of the moon and the DSIF. The relay satellite is injected
into a solar orbit from the Apollo spacecraft prior to a lunar parking
orbit being established on the translunar trajectory. This expendable
satellite is needed only to provide a relay function until the CM is
placed on its transearth trajectory. Considerations involved in the
selection of a suitable relay trajectory will be the subject of a future

note (i.e., geometry and fuel considerations).

One feasible approach to allow trajectory measurements to be
made while the Apollo spacecraft is occulted from the earth by the
moon is indicated in the material that follows. The geometric aspects

are illustrated in the figure below.

e . Spgc\ecraf?

Satellite
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During the time that the spacecraft is occulted from the earth by
the moon, the transponder directional antenna system is pointed towards
the relay satellite. During this time, the DSIF antennas are then made
to look in the direction of the relay satellite. The relay satellite is
postulated as possessing two antenna syétems: one antenna system
being employed between the DSIF and the relay,and the other system
for communication between the spacecraft and the relay satellite. The
most severe conditions at large distances will be associated with the
link between the relay satellite and the spacecraft. The transponder
characteristics for both the spacecraft and relay satellite are taken
from Apollo Note No. 18. Two antennas are postulated for the relay
to minimize power requirements and yet be compatible with simple
antenna pointing system as already in use. One antenna would be
essentially omnidirectional for the near lunar phase and the other
as a four-foot parabolic dish for the deeper phase operation. The
four-foot dish has an antenna beamwidth of about 7. 5° and would be
used at distances in excess of about 40,000 KM. A rather simple
optical seeker could be employed with an accuracy (3 o) of about 2
degrees. The radar angular coverage to encompass the angular region

involved in the spacecraft orbit is given by:

e T 2 tan—l (—%)

This function is plotted in Figure 1. For distances in excess
of 40,000 KM a 2 degree pointing accuracy would reduce the antenna

gain by no more than about 3 db.

The received power and signal-to-noise ratio will now be

considered. The received power (PR) is given by:

L2
Pr= PTGAGR( "R) Ly

PT = transmitter power output = .2 watt (solid state

transmitter)
G, = gain of Apollo antenna = 26.5 db (4 foot dish)



GR = gain of relay anteﬁna 26.5 db (4 foot dish)

0 db (omni ~ antenna)

= {ree-space wavelength = 13 cm

LZ = total losses = 0 db (in practice this number will

lie between 3 - 10 db for typical

system)

R = distance between Apollo spacecraft and relay
satellite (assumed equal to distance from relay

satellite to center of moon)

Numerical values are indicated in Figure 2. The level of
-150 dbm corresponds to the receiver noise level associated with a
11 db noise figure receiver and a bandwidth of 20 cps and is about the
threshold level of a phase lock loop. The omni-antenna system would
yield a 10 db signal-to-noise ratio up to distances of about 40, 000 KM.
For longer distances, the 4 foot parabolic dish would be employed.
Useful ranges of about 106 KM would be obtained. The 40,000 KM
distance was earlier indicated as compatible with this antenna system
and the two degrees of pointing accuracy. Broader bandwidth trans-
missions and system losses can be accommodated by combination of
increased power levels, improved noise figures, and larger antenna
systems. Much larger antenna systems would impose a necessity for
automatic RF tracking techniques to be employed. The minimum band-
width that can be employed is determined by the rate of change of
doppler frequency. A rate of change of range rate corresponding to
about 2 moon g's at S-band would place a minimum bandwidth restraint
of about 5 cps which is fully compatible with the minimum 20 cps

bandwidth considered earlier.

One additional radar consideration should be mentioned; namely,
CW waveforms are employed in this mode. Neglecting time sharing
possibilities, it will be necessary that two transponders be employed
in the relay satellite since four distinct frequencies are involved

simultaneously (two for transmission and two for reception). The

1I-4



Apollo spacecraft transponder may remain unchanged provided that

the DSIF utilizes two sets of transmitting and receiving frequencies
(not required simultaneously). This would necessitate additional fre-
quency allocations for the DSIF. If the DSIF was maintained unchanged,
two sets of transponders would be requii'ed by the Apollo transponder

(some common circuitry could be employed).

In summary, from radar consideration alone, the relay technique

is quite feasible particularly where narrow bandwidths are involved.
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APOLLO NOTE NO. 44 L. Lustick
16 April 1963

BACK OF MOON RELAY TRAJECTORIES

PurBose

The purpose of this note is to examine the feasibility of es-
tablishing a relay which could be used to communicate with the Apollo

vehicle while it is on the back-side of the moon.

Introduction

It has been suggested that it would be desirable to have a relay
that would allow communication with a vehicle while it was on the back-
side of the moon. A possible scheme for accomplishing this (suggested
by Dr. Yarymovych) is to use the translunar injection vehicle (S-4-B).
The(S-4-B) subsequent to translunar injection is approximately in a
iree return orbit to the earth. The idea is to use the pad in this vehicle
to boost itself or a special purpose relay package so as to allow it to
escape from the back-side of the moon. In order to evaluate if the
idea is practical, it is necessary to establish the relay trajectory
relative to the moon as a function of boost velocity. In particular,
the range and the portion of the moon visible from the relay as a

function of time are of interest.

Method

1. The time and angular travel for a vehicle with respect to the
earth to reach a distance from the earth equal to the mean distance
from earth to moon were calculated as a function of injection velocity.
The effect of the moon was neglected and the injection angle and altitude

were held constant at 20 degrees and 200 nautical miles, respectively.

2. The injection velocity consistent with a trip time of approxi-

mately 72 hours was selected as the standard orbit.
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3. The point where the standard orbit would be required to pierce
the lunar sphere of influence in order to have a perilune altitude of

approximately 100 nautical miles was next determined.

4. The effect of increments of boost velocity on impact conditions
with the LSOI was established.

5. The trajectory of the relay with respect to the moon was es~-
tablished for boost velocities of 160, 260, 360 ft/sec.

Results

Figure 1 is a plot of the trip time as a function of the trans-
lunar injection velocity. It can be seen from Figure (1) that the trip
time is a very strong function of the translunar injection velocity. For
an injection velocity of 35,440 ft/sec., the trip time is 69.5 hours

and this condition was selected as the standard orbit.

The impact location and hyperbolic orbit relative to the moon
for the standard orbit are shown in Figure 2. It should be noticed that
in order to have a perilune of approximately 100 nautical miles it is
necessary to impact the lunar sphere at a point 51.5 degrees removed

from the line connecting the earth and the moon.

Figure 3 is a plot of the angular travel of the vehicle with respect

to the earth as a function of the translunar injection velocity. The
angular travel is consistent with a radial distance from the earth

equal to the mean distance from earth to the moon.

Figure 4 is a plot of the change in the angular location of the
vehicle relative to the line connecting the earth and the moon from the
angular displacement of the standard orbit as a function of boost

velocities.
(b0 0T = (gyme T ] -

For the boost velocities considered (160 - 360 ft/sec), the

relay orbits would completely miss the lunar sphere of influence (58 x 10

meters).

6
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Figure 5 is a plot of the position of the relay relative to the
moon as a function of boost velocity at times of 72 and 100 hours.
The range of the relay relative to the moon is less than the mean
distance from earth to the moon for any of the boost velocities con-
sidered for the longest time considered (100 hours). At a time of
72 hours , approximately 153 degrees of the back-side of the moon
is visible independent of boost velocity. At a time equal to 100 hours,
approximately 129 and 134 degrees of the back-side of the moon are
visible for boost velocities of 160 and 360 ft/sec., respectively. Of
the boost velocities considered, 160 ft/sec. is most desirable since
the range relative to the moon is the least (. 6 x Earth to Moon distance)
and the angle of the back-side of the moon visible is not compromised
greatly. Lesser boost velocities are feasible but were not investigated

in this note.

Conclusions

The application of a modest boost increment to a relay
(Via the S-4-B) at or near translunar injection appears to be a desirable
way of establishing a relay to communicate with the back-side of
the moon. For ‘a boost velocity of 160 ft/sec., approximately 150-130
degrees of the back-side of the moon will be visible to the relay
during the lunar portion of the Apollo mission. The range between
the relay and the moon will not exceed 0. 6 of the moon distance

from the earth to the moon.

Recommendations For Future Work

The analysis in this note is at best a first order approximation
to the relay orbits. With regard to orbit determination, the follow-

ing future studies are recommended.

1. Relay orbit determination on a computer program which

solves the restricted three body problem.

2. Investigation of sensitivity of injection conditions to desirability

of relay orbit.
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3. Comparison of boosts at translunar injection with boosts

applied at other portions of the translunar orbit.
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 ADDENDUM H. Epstein
18 April 1963

COMMUNICATIONS CAPABILITY OF UNSTABILIZED S-4-B
SATELLITE RELAY SYSTEM

The desire to eliminate or at least minimize the stabilization
problem for the S-4-B in the satellite relay mode of,operation makes
it desirable that the S-4-B empioy omni-directional antennas. The
capability in terms of bandwidth for such a system will be indicated
below. Emphasis is placed on considerations involving the Apollo
spacecraft and the S-4-B. In an earlier portion of this Apollo Note,
it was indicated that the distance between the spacecraft and the $S-4-B
would be less than about 250, 000 km for the desired operating period.
For the sake of convenience, a scaling operation will be performed on

the parameters selected in Apollo Note No. 35.

The primary parameters involved in the improvement of the
range performance for an omni-antenna in the S-4-B are transmitter
power, receiver noise figure, and Apollo spacecraft antenna gain.
Restricting the D. C. power requirements to about 100 to 200 watts for
the electronic equipment limits the transmitter RF power level to about
25 watts with amplitrons and 10 watts with cavity amplifiers (Apollo
Note No. 18, Page 4). The noise figure with tunnel diodes being
employed should be about 6 db (Apollo Note No. 18, Page 5). The
4-foot antenna in the Apollo spacecraft could be increased to about 5-foot
(as suggested in the BellCom report for T.V. application) without
undue complications with a resultant 2 db increase in antenna gain.

The threshold sensitivity for the transponder to maintain lock 95% of

the time with a 20 cps receiver bandwidth is about =154 dbm (JPL

TM No. 33-26, DSIF Specification, Volume I, Page II. B-24 and IIL. B-25).
A conservative design would require about a 6 db greater signal level.

In addition, for a conservative design a 10 db allowance should be

made for allowable omni-antenna gain, pointing inaccuracy of the

directional antenna, transmitter degré.dation, and receiver degradation.
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The following table indicates the bandwidth capabilities for the Bogie

System, a maximum performance system, and a conservative system

design. The latter two designs make use of an amplitron (power

levels = 25 watts) and a low-noise tunnel diode receiving system

(noise figure = 6 db).

antenna and separations of 250,000 km for all systems.

Table 1.
Bandwidth Capability

The performance is indicated for an omni-

Bogie Maximum Conserva-
System Per- tive
formance Design
Transmitter Power (dbm) 23 44 44
Improvement (db) 21 21
Directional Antenna Gain (db) 26.5 28.5 28.5
Improvement (db) 2 2
Noise Figure (db) 11 6 6
Improvement (db) 5 5
Conservative Performance
Factor (db) 0 0 -16
Signal Strength (dbm) -158 -130 -146
Relative Bandwidth
Increase (db) -4 +24 +8
Maximum Allowable
Bandwidth (cps) 8 5000 125
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Scaling laws such as those indicated above make the effect of
other combinations of parameters rather simple to obtain. Personal
past experience indicates that probably several hundred cycles per

second of bandwidth could be expected.

To complete this picture, it is necessary that a more complete
discussion of noise sources take place. For internal noise figures as
typified by the above mentioned designs, only solar noise can present
an external noise source which could markedly degrade the system
performance. To be specific, the effective noise temperature of the
sun at DSIF frequé_ncies is about 80, 000°K for the quiet sun and
10, 000, 000°K for the disturbed sun for suitably narrow beamwidth
antennas when pointed at the sun. (These noise temperatures correspond
to noise figures of about 24 and 45 db respectively). Effective solar
temperatures for antennas, pointed at the sun, with antenna beamwidth
which completely encompass the sun are reduced approximately by
the ratio of the solid angle subtended by the antenna beamwidth to the
solid angle subtended by the sun. This reduction factor is about 53 db
for an omni-antenna and about 20 db for a five foot antenna at the
S-Band DSIF frequency. It is interesting to note that an omni-antenna
receiving system in the S-4-B would be relatively unaffected by solar
noise while the directional antenna receiving system in the Apollo
spacecraft would only be slightly affected by the quiet sun and very
much affected by the disturbed sun (about 25 db reduction in band-
width capability would result). As a matter of fact, when limited
by solar noise alone the signal-to-noise is independent of receiving
antenna gain until the point is reached that the antenna main-lobe
solid angle no longer encompasses the entire sun (about .5 degrees in
each dimension for circular beams). This situation can be alleviated
by the design of antenna with low sidelobe levels in the direction of
the sun if the main-lobe of the receiving system is not required to
illuminate the sun. Where this limitation is a serious deterrent ‘
only improvements in the transmitter power level and antenna gain
or making extremely small receiving antenna beamwidth can markedly

improve the performance.
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Conclusions

1. An information bandwidth in excess of 100 cps can be employed
for separation distances between S-4-B and Apollo spacecraft of 250, 000 km.
This performance level is obtainable with an unstabilized antenna system

on the S-4-B, and a D. C. power level from 100 - 200 watts.

2. Solar noise can place a severe limitation on attainable performance.
This necessitates that directional antennas be designed with low side-

lobe levels. Furthermore, from a communications viewpoint, it is '
highly desirable that the main-lobe of directional antenna systems not

be required to illuminate the sun., This would place a restraint on

desirable trajectories.
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APOLLO NOTE NO. 87

Section 7.

FAR-SIDE RELAY ' L. Lustick/
C. Siska

Additional trajectory calculations were made on the far-side
relay to see if boost conditions could be established which would allow
voice communication with the CM/LEM. It is desired to have voice
communication capabilities during the portion of the mission from
deboost into lunar orbit to rendezvous between LEM and CM (a period
of approximately 32 hours). Itis particularly important to have voice
communication at the time of deboost of CM into lunar orbit,

The ground rules specified by Mr. Fordyce allowed boosts as
large as 1000 ft/sec. to be applied within the first seven hours follow-
ing translunar injection. The range between the relay and CM consistent

with voice communication was given as 40, 000 nautical miles.

Method

Nominal translunar injection conditions were established which
were approximately consistent with the arrival of the CM at perilune
(100 n.m. ) 72 hours after injection. The effect of perturbations in the
velocity vector, both at translunar injection and approximately 7 hours
after injection were examined. The locus of the position of the relay
relative to the CM/SM at the time when the CM/SM pierces the LSOI
was established. These Loci are shown in Figure 1. The elongated
ellipse is for a boost at translunar injection of 1000 ft/sec. The
different points on the locus correspond to different boost directions
relative to the reference velocity vector as indicated in the upper
left diagram in Figure 1. The other ellipse shown in Figure 1 corre-
sponds to applying a boost of 1000 ft/sec. approximately 7.6 hours
after translunar injection.

In lunar space, each point on the locus is traveling roughly in
a 45 degree direction from lower left to upper right, and therefore, one
can quickly estimate which points will penetrate the lunar sphere of

influence.

II-21



Results

The trajectories of several points on the loci of Figure 1 were
examined briefly in lunar space and at first glance, it appears that the
positions around a =- 90°for the 7.6 hr. delayed boost are the most
promising to fulfill the mission requirements.

Figure 2 shows the trajectory for the @ = -90 boost in lunar
space and also the reference lunar vehicle trajectory. The lunar
vehicle enters the LSOI at 60 hours after translunar injection and
arrives at perilune (for deboost into a circular orbit) approximately
12 hours later. Corresponding positions for the booster (Far-side
Relay) are indicated. The perilune visibility limit shown in Figure 2,
(i. e., the tangent to the lunar surface which passes through the
perilune position) indicates that perilune is always visible to the
booster position. Approximately thirty hours after lunar vehicle
deboost, the Far-side Relay has approached the 40, 000 n.mi.
communications limit. Thus, it appears that the Far-side Relay
will be within the voice communications limit for both lunar deboost
and lunar rendezvous. Although it appears occultation by the moon
occurs at 102 hours, this presents no problem since the trajectory
can be shifted with slight changes in boost direction around a = -90°.

Far-side Relay trajectories going the other way around the
moon (counter-clockwise), say for boosts slightly less than a = 90°,
may also fulfill the mission requirement. This alternative procedure

is yet to be investigated.

Conclusions

Assuming that a 1000 ft/sec. boost is available at approximately
7 hours after translunar injection, voice communications via the Far-
side Relay appears feasible for both the lunar deboost and lunar

rendezvous portions of the Apollo mission.
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Future Tasks

1. Write a computer program based on the Egorov Model to
facilitate the trajectory calculations so that a more complete evalu-

ation of the far-side relay potential can be obtained.

2. Establish the nominal trajectory for the CM/SM more accurately.
That is, what are translunar injection conditions that are consistent

with a free return trajectory.

3. Investigate the effect of errors in the boost velocity on the

far-side relay trajectory.

4. Determine expected orientation errors in the reference system

at the time of boost Iand decide how the boost is to be executed.

5. Investigate the potential of the far-side relay as an aid to

navigation.
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APOLLO NOTE NO. 90 C. Siska
6 August 1963

FURTHER EXAMINATION OF FAR-SIDE
RELAY TRAJECTORIES

DISCUSSION

This note represents a continuation in the study of Far-side
Relay trajectories as explored in Apollo Note No. 44 and Section 7 of
Apollo Note No. 87.

There exists an interest for using the SIV booster as a voice
communications relay between locations back of the Moon and the Earth
during the times of lunar vehicle deboost from the translunar trajectory,
and lunar rendezvous prior to Earth return. These periods of time occur
approximately 72 and 100 hours, respectively, after translunar injection.
A slant range limit of 40, 000 n.mi. from the Moon has been adopted as
consistent with the power requirement involved in the voice communication.

It is assumed that a velocity impulse of up to 1000 ft/sec. can be
applied to the SIV booster at any time during a period of approximately
7 hours after translunar injection.

The feasibility of fulfilling the above-mentioned criteria is shown
in Apollo Note No. 87, which illustrates a representative trajectory in
.the vicinity of the Moon.

In this note, the relation between boost velocity and direction,
and the time of boost application is explored in a cursory manner, in

order to indicate the operating region for these characteristics.

RESULTS

_A graphical-analytic procedure has been used to determine the
approximate lunar trajectories which appear in this note. |

The particular combinations of operating characteristics which
have been investigated are as follows:
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t AV a

Boost Direction

Time of Boost Application Boost Velocity .
.. . Relative to Path
(hours after translunar injection) (ft/sec.) Velocity
7.6 1,000 -120° to + 120°
7.6 500 -120° to + 120°
0 1,000 -120° to + 120°

It quickly became apparent that the range of boost directions, a,
which might satisfy the mission requirement was approximately -90°< o < -115°,

as depicted in the following diagram.

-

<o Path Velocity
/ 90°
IV Booster
?— 1% S {av at time t
—~Radius
To
Earth

To approximate the range of admissible values of « for each
combination of AV,andt, the a= -90° trajectory was computed for each
case to represent the one limit, and then the other limit of @ was obtained
by searching for the trajectory which yielded perilune visibility at
t = 72 hours. These two trajectories for each combination of AV, t
are illustrated in Figures 1, 2, and 3.
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The vertical axis of the co-ordinate system has been chosen to
be the Earth-Moon line at t = 60 hours. This line i8 moving around the
Moon in a counterclock-wise direction at a rate of 0. 55°/hour, and
therefore, at some time part of the trajectory will not be visible to
the Earth. Relative to the Earth, the path velocity is approximately
2 km/sec. so that the duration of occultation is approximately one-half
hour.

Using Figures 1, 2, and 3, one can develop the operating region
for given criteria as shown in Figure 4. Permissible values of AV
and a for a given t lie within the region bounded by the specified t
contour. This contour, as shown in Figure 4, consists of two segments;
the left side is associated with the upper trajectory of Figures 1, 2,
and 3 (leaving the 40,000 n. mi. circle at t = 100 hours), while the
right side is for the lower trajectory (perilune visibility at t = 72 hours).
A third segment which completes the contour is not shown and this would
represent the situation when the t = 72 hour position lies on the 40, 000
n. mi. circle.

Note that if the upper limit of AV is 1000 ft/sec., then applying
the AV at t = 0 offers hardly any margin for error in thrust direction.
Therefore, it appears preferable to apply AV sometime after translunar
injection. However, thrust direction accuracy is expected to diminish
with time because of gyro drift associated with the stable platform.
Furthermore, evaporation of the residual fuel in the SIV booster may
significantly lower the AV below the estimated value of 1000 ft/sec. for
times after t = 0. These factors have not been given consideration
up to the present time.

It can be noted that some combinations of AV and « yield counter-
clock-wise lunar trajectories. However, none of these will simultaneously
satisfy the criterion of observing the lunar vehicle perilune position at

slant ranges of not more than 40, 000 n. mi. for botht = 72 and t = 100 hours.

CONCLUDING REMARKS

A cursory analysis has shown that an operating region exists
for the velocity impulse and direction for the SIV booster which will
11-28



satisfy the Far-side Relay voice communication requirement.
A precise definition of the boost conditions for the Far-side

Relay should involve the following considerations:

1. A more extensive set of data to provide a more accurate
and detailed delineation of the boost operating region
(such as illustrated in Figure 4). This data can be
most efficiently collected by means of a computer

program using an Egorov Model.

2. Examination of the velocity impulse and thrust direction

accuracy available with time after translunar injection.

3. A final check on the selected design operating point

using three-body trajectory equations.

To the above should probably be added the consideration of
possible secondary missions of the Far-side Relay which may influence
the particular reference trajectory chosen. For example, the Far-
side Relay might be used as a navigation aid, together with an Earth-

based computer, for lunar rendezvous steering commands to the LEM.
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500 1
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Limiting Criteria:
1. Lunar Vehicle Deboost Visible (t = 72 hours)

2. Lunar Rendezvous Visible (t = 100 hours and
: approx. same position as deboost)

3. Slant Ra.nge' at Above Times = 40, 000 n. mi.

t = 0 hours Time after Trans-
lunar Injection for
/— t = 7. 6 hours AV Application

e r 4
v

-80° -90° -100° -110° -120°
a - Direction of AV Relative to Path Velocity

Figure 4. Approximate Operating Region for
- Far~side Relay Boost.
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APOLLO NOTE NO, 97 C. Siska

20 August 1963

MINIMUM BOOST VELOCITY REQUIREMENT
FOR FAR-SIDE RELAY

PURPOSE

This note presents data which augments the data appearing
in Apollo Note No. 90,

RECAPITULATION

There is an interest in using the S-IV booster as a far-side
relay to facilitate voice communications ""back of the moon" to earth
during the lunar deboost and lunar rendezvous operations. In prin-
ciple, after the S-IV booster injects the lunar vehicle into a trans-
lunar orbit and is jettisoned, an additional boost can be applied to
send the booster on its own translunar trajectory. To fulfill the far-
side relay requirements, as presently defined, the S-IV booster must
be within a slant range of 40, 000 n., mi. from the lunar vehicle deboost
position at a time approximately 72 and 100 hours after translunar

injection (or, equivalently, S-IV booster jettison).

Apollo Note No. 90 indicates the operating region for the boost
velocity, AV, and its direction @, relative to the path velocity, in order
to fulfill far-side relay requirements when the AV is applied at 0 and
7.6 hours after translunar injection. Representative far-side relay

trajectories are also shown in the note.

The present note examines the case when AV is applied at
4.15 hours after translunar injection and shows the resulting compil-

ation of data.
RESULTS

Figures 1. and 2. show representative far-side relay trajec-
tories in lunar space for AV values of 1000 and 700 ft/sec respectively.

The direction of AV, denoted by @, is measured relative to the path
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velocity existing at 4. 15 hours after translunar injection; a= 0
indicates that AV is directed along the path velocity and negative
@ values decrease the angle the path velocity makes with the local

horizontal.

By combining results such as shown in Figures l. and 2.,
one can develop limiting contours in the AV, « plane as shown in
Figure 3. Combinations of AV and a which satisfy the indicated
limit criteria lie within a specified contour. The left hand side of
each contour is dictated by the criterion that the t = 100 hour positions
lie on the 40, 000 n, mi. circle (see Figures 1. and 2.), while the
right hand side is associated with seeing the lunar vehicle deboost

position at t = 72 hours.

Now the time when AV is applied will have an influence on
the magnitude of AV which is available at that time, because of fuel
"boil-off*,

Thus, it would appear that from the consideration of boost
velocity availability and boost requirements, there exists an upper
limit to the time for applying the boost. The minimum AV required,
as a function of time, can be obtained from Figure 3. and the resulting

curve is shown in Figure 4,
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PART III: CM/SM ABORT GUIDANCE

This section is concerned primarily with the problem of return-
ing the CM/SM to Earth, using DSIF or MSFN assistance, in the situation
where the CM/SM guidance system is severely crippled. It is shown
that if the astronauts are capable of functioning, a safe return can be
accomplished even though the on-board guidance system has failed
and the main engine is locked hard-over.

~ Apollo Note No. 33, A Method of Manual Thrust Control During

Boosts* describes a technique for thrust control using a star for orienta-

tion. Apollo Note No. 38 examines Spin Stabilization for Altitude Control

During Boosts* and shows that use of spin stabilization provides control

of thrust direction even with the main engine locked hard-over.

Next, Note 47, Efficient Boosting with Low Thrusts* investigates

the possibility of return-to-Earth with the main engine out of commission,
through the use of the attitude control jets. It is found that the time
required for this kind of operation is too great for it to be practical in
returning the CM from an orbit about the Moon, but that it may be useful
in an abort when the main engine fails during deboost into lunar orbit.

Apollo Note No. 49, Pre-Boost Attitude Control* examines the

likelihood that sufficient attitude control will exist for spin stabilization
of the vehicle prior to boost, and describes the spin stabilization pro-
cedure.

Apollo Note No. 63, DSIF Capability on Trans-Earth Trajectory 8/

describes a procedure for safe zero-lift return<to-Earth using the ground
system for navigation, and stars and spin stabilization for guidance. It
is shown that the proper trajectory for zero-lift re-entry can be achieved

eight hours before re-entry.

8/ Employs results of Bissett-Berman Corporation Apollo Note

No. 26. Error Analysis for Return-To-Earth Trajectories,
Part 3.
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APOLLO NOTE NO. 33 G. F. Floyd
19 March 1963

A METHOD OF MANUAL THRUST CONTROL
DURING BOOSTS

After the main engine thrust axis has been pointed at the
commanded star, there is still the problem of center of gravity
location uncertainties. With the exact center of gravity location
unknown, spacecraft body torques in roll pitch and yaw will result
in angular acceleration of the thrust direction away from the commanded
direction. Before considering the general three-dimensional case,
we will consider only the case of a single plane (yaw or pitch but no
roll). The definition of quantities is given in Figure 1 where all
quantities are the actual quantities, even though the lack of center

of gravity location will mean that we will not know where the actual

vehicle axis is.

Actual Thrust Direction

Desired Thrust
Direction

Normal To
Desired Thrust
Direction

Actual
Thrust Line

/
\\90°

/
\ Actual
Center of Gravity

Actual Vehicle Axis

= Line between actual
application point and
actual center of gravity

// \Actual Thrust

+6 \/ Application Point
/
/

Figure 1.
Actual Motion Diagram 111-2




Let

¢ 2 distance from actual thrust application point to actual
center of gravity
J & actual moment of inertia
2  actual mass
F @ actual thrust
Then,
[ ]
A
" F1
0 = —J—-6

Now assume the rocket engine is held at a fixed gimbal angle so,

5§ = &
o

and initially the vehicle attitude rate is zero so,

e = 0
(o)

Also, at the start of a boost:

Vn0 = 0
Using these conditions in 2 and 3 we have,
_ 1 Fi 2
e = Qo t 5 5 60 t
and
v. = E (s t-ot-7 +Ls 2
n m o] o] J o)

So combining (7) and (8):

Vo w Bt (g e) - 3 le-s,]

Now with reference to Figure 1 and Equation (9), redraw

Figure 1 as Figure 2.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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Actual
Thrust

Desired Direction

\

Actual
Center of
\ Gravity
Actual
Axis
Figure 2.
Let
Y = angle between actual thrust and desired direction
= 6-0
(10)
A0 8 change in actual axis = change in assumed axis
_ _ 1 F 2
=987z T8¢
With these definitions (9) becomes:
F 1
Va = Et(l'po-? A8 (1)
From (11) we see that
Vn = 0whenA9=341o (12)
Now in the actual case we know the thrust direction with
respect to some vehicle body axis (not necessarily through the
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unknown actual center of gravity), since the engine gimbal angle is
known and the thrust alignment with respect to the physical nozzle

can be accurately measured during preflight tests. Thus with reference
to a known vehicle axis the thrust direction is known. Similarly, since
the stars are visible this known axis can be accurately pointed at the
star. Then with reference to Figure 2, y is known. Assume a ring

and bead-like sight with the bead initially pointed at the star and the
ring made three times the known ¢ angle. Then if the astronaut stops
thrusting when the star crosses the ring, Vn will be zero (see Equation 12).
He should then redirect the bead at the star and repeat the thrust appli-
cation, each time shutting off the engine when the star reaches the ring.
For this adjustment we can calculate the thrust time deviation (t )} of

each pulse by using 12 to 10° Thus,

_ 1 Fi 2
A0= 3y = T %%
oo [fT
o Fy 60

Now (11) is a correct formula but to get the cancellation ¢
and A ©® must be of the same sign, thus, we must make sure that
the actual center of gravity a priori known with the correct sense,

otherwise the Vn will increase rather than go through zero.

To see this more clearly and also discuss the modifications

which must be made to the three dimensional case, consider Figure 3.

The figure is drawn in the plane normal to the desired thrust
direction. Prior to firing,the spacecraft is aimed so the star is in
the center of the inner ring. The outer ring is concentric with the
inner end of a radius equal to three times the distance from the thrust
direction (shown with a cross) to the star (Equation 12). The thrust
must be to the same side of all possible center of gravity location
in order to make the signs in (11) correct for cancellation. Since

Figure 3 assumes to have no roll component, the line between the

111-5




\Star Motion

Figure 3.

thrust and actual center of gravity determines the direction of motion.
Thus, since the thrust star and actual center of gravity are not in a
line, the star does not pass through the thrust direction during its travel
to the outer sight ring. Calling 60 the angle between the thrust and

the projection of the star on the thrust center of gravity lirie, we see
that the radius of the outer circle should be 3 éo rather than 3y

where Yo is the angle between the thrust and the star. However, not
knowing where the center of gravity is means we don't know c‘)o so

can't adjust the outer ring radius correctly. However, the fact that

the star does not move through the thrust direction means that if on

the next boost the pilot will readjust the thrust direction working
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down toward where the star moved, he will make 60—> q;o, and when
the star moves through the thrust direction 60 = 4y and (12) will be

satisfied when the star crosses the outer ring.

Thus by changing the engine gimbal angle and indicating the
thrust direction in the sight by a cross, in successive boosts the
pilot can get the star to move through the thrust direction mark, and

so make Vn = 0 for each boost,.

After the thrust axis, star and center of gravity are in line, then
V_for each pulse is zero and to increase the duration, hence magnitude,
ofneach pulse the thrust can be brought closer to the center of gravity by
moving the thrust line towards the star. This will require changing the

diameter of the outer ring since by (12) it must be kept three times the

initial thrust - star angle.

The method will not work with roll torques. However, the presence
and direction of roll torques will be evident to the astronaut by the motion

of the star relative to the sight since he will see the roll rates build up.

While this method appears possible in principle, it seems

overly complicated and the roll problem will make it hard to execute.
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APOLLO NOTE NO, 38 G. F. Floyd
4 April 1963

SPIN STABILIZATION FOR ATTITUDE CONTROL
DURING BOOSTS
This note investigates the feasibility of spin stabilization during
spacecraft maneuvers as a back-up in case the normal vehicle autopilot

system fails. The symbols to be used in the analysis are defined in

Figure 1.

z

A%

/T\ C
>
B

x
Figure 1.

The xyz is fixed to the spacecraft with z axis taken as the longitudinal
axis of symmetry hence is also the desired thrust direction. The
moments of inertia are A, B, and C along %, y, and z, respectively

with x, y defined as

A >B >C (1)
and from symmetry of the spacecraft

A = B (2)

We will assume that the thrust is along z but because of c. g. shifts,

that a resultant torque My is applied about the y axis which from (1)
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is the intermediate moment of inertia. The reason for taking the torque

about (y) is that this is the unstable axis for steady spin., The equation

of motion in vehicle fixed axes are:

—_— - dH - -—
M=yM = — +w x H (3)
y dt xyz Xyz
with
H=x wa+y Bwy+z sz (4)
and
Opyz= X O Y wotzo, (5)

Using (4) and (5) in (3) and equating components we get the usual Euler
equations:

0=Aw +(C-Blo w ‘
x y =z

M =Bw +(A-C)lw w . (6)
Y Y xX z

0=Cow +(B-Aow w
z X'y

—

In this method the vehicle would first be spun about the z axis prior to

the initiating of thrust, hence the initial conditions at the beginning of

the thrusting are

(7)

The solution of (6) gives the vehicle body rates in the body fixed coordinate
system x, y, 2z, and to judge the feasibility of the spin stabilization it is

necessary to calculate the motion with respect to inertial coordinates,
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We will use the initial orientation of the xyz as this inertial system,

(i. e. the Xor Yor Z, System) and instead of using Euler angles will work
with the direction cosines, Then since we will initially align Z with the
desired boost direction we will use z? as the correct thrust direction
and be primarily interested in the angle between z and zt . Thus we

define the set of direction cosines as:

c 2 x. z
1 o
A — —
CZ— y © oz A (8)
A - —_
C3— z z

Where from the definition we have

C10=Cy=0
(9)
C30 =1
and the relation between the C's:
2 2 2
Cp+Cyr+C" =1 (10)

Differentiating (8) and using the fact that x, y, z are unit vectors we
have with (8)
Cl =x 2z = (wxyzx x) - z = (ymZ -zwy)' z
(11)
=W, (v * zo) -wy(z. zo)z Czwz - C3<.oy

Repeating this procedure for C2 and é3 we get the set:
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C,=C,w_-C, o (12)

In the general (and actual) case of unequal moments of inertia, this is
about all that can be done analytically and for computer solutions the

forms shown in boxes are easy to program.

Analytic Solution When A= B

In the case where A = B (which can never occur for an actual

body), (6) reduces to the simple set:

0= Aw -(A-C) v w
x zy

M =At.oy + (A - C) w, © {13)

w 2 (1 - c ) w T
n A zo
A M : {14)
“t= Aw
n
e

the first two of (13) becomes:

0 2w -0 w
.x ny (15)
W w, =Ww tw w
n t n x
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The solution of (15) with the initial conditions of (7) are then easily found

as:

W =

€
]

w

w

t

t

(1 - cos wnt)

sinw t
n

(16)

Since the C's are direction cosines and the angle we are interested in is

the angle between z and ;o » it is now convenient to define:

CZ sin 0 sin ¢ (17)

1 - sin 6 cos ¢

Where the association of cosine ¢ with C1 and sin ¢ with —CZ follows
from the nature of C1 and C2 near t = 0 as defined by (12) and (16).
In particular, on the basis of the behavior of the C's near zero as
defined by (9), (12) and (16) we find easily that

90= 9°= ¢o=0 (18)

Using (17) in expression for é3 in (12) we get
-9 sin® = - ©  sin 6 cos 4 - w_sin © sin 4

So l ézwxsin¢+wycos¢ (19)

Then solving (17) for é, differentiating and using (12):
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271 172
2
. d -1 CZ _ C1 C2 (sz.oz - C3wy) - Cl(C3wx -Clwz)
1 C C + C
1+ 2 1 2
C
1
wy sin 6 cos 0 sin ¢ - wx sin 6 cos 8 cos ¢
=w -
z sinze
So . ﬁxsiné-wxcosé
b =0, - (L0 ) (20)

Equation (19) and (20) are true in general and now using the solution (16)
for the case of A= B we have

0= w, (1 - cos wnt) sin & + (mt sin wnt) cos ¢

w w w

.2 n . . n n
=2wts1n —Z—-ts1n¢+2wts1n—z—t costhosx)‘
8 = Zwt sin —- t cos (¢ - v t) (21)
;‘ ce @, sinw t sin ¢ - w, (1 - cos wnt) cos ¢
T Tz tan 0
o e N
mn wn 2 wn
-w ) Zwt sin —— t cos —5— t sin 6 - Zwt sin” ——t cos é
T Tz tan 6
O —
W w
. 2w sin—ntsin(é-—nt)
2w . _t 2 2 (22)
zo tan 0
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Because of the initial conditions (18) we see that near zero:

0 — atZ and ¢ —bt (23)
Using these in (21) we have
W
at= 2 wt -29- t or
a=w o (24)
Then from (22):
w
20w t(b-=2)t w
b=w_ - t n 2 zw -2(b-=")
z 2 z 2
.0 w w t o
t n
So
3b =(mz C+ w)
o
So
' _ 1
b= 3 (wz + wn) (25)
o
So near zero
0 — ww t2
t n
(26)
1
é —3— ((.L)zo + Q)n) t

Approximate Solution for A = B

Inspection of (22) shows that when w, << ®_  and 6 ¥ O that

(o]

$ =~ w (27)
(o]
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so that with the initial values (18):

é =~ w t (28)
“o

Using (28) in (21) we get

w w

. . n _ %n
6 = Zwt sin — t cos (wzo > )t
wn wn wn mn
=wt' sin —2-—+(wz——2—) t - sin (wz -T)-_Z._ t
o o
0=~ w, [sm (wzot) - sin (wzo - wn) t ] (29)

Integrating with the initial values (18):

w, @ w, W,
0~ - a - — cos (w_t)+ cos {(w -w )t (30)
W ~w w z w z n
z vz n z o z n o
o ‘o o o

w W W w

0 ~ - t n .ttt
max ~ w (w ~w) w W -w
z 'z n z zZ n
o o o o
2w
f‘, -
emax ~ o -w (31)
z n
o
and this will occur when
cosw_ t =+1 and cos (w -w )t = -1 (32)
zZ max z n’ ‘max
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Calculations

A=B = 110,000 slug ftz CM/SM on return to earth
C=1/6A

My = 20, 000 1b-ft SM engine at 20, 000 lbs and

1 ft. c.g. error

(33)
w = mwrad/sec Spin period = 2 sec.
° { Centrifugalforce at 3 ft = rwzz
= 1 earth g
]

Using (33) in (14):

w =(1- -é-) m= 2.61/r/sec
(34)
_ 20, 000 _
mt - (110’ 000)(2. 61)_ = . 07 rad/sec.
Using these in (31)
(2)(.07) _ - o
max =~ (.53 = ,265r= 15,1 (35)
at cos wt =+1 and cos .53t = -1
max max
So e
l TI’ 3m _ :
tmaxd 53 53 = 6, 18 sec. (36)
with - R o )
Tt = 6w, 18w cos cosine = + 1
max

The integration of the exact equations (21) and (22) for A = B and the
values in (33) was carried out on a digital computer and the curve of 0

versus time shown in Figure 2, From the curve we find max at 6 and 18
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sec with values of . 257 and , 252 radians thus agreeing surprisingly

well with the approximate values.

Computer Results for A ¥ B

To investigate the case of A Q’f B we let

A= (1,05)(110, 000) = 115, 500 slug ft2

B = (. 95) (110, 000) = 104, 500 slug ft>

A-B 11,000 _
so that T = 110,700 = 10%
> (A + B)

withC, M and w as before in (33).
y Z,

The results of this calculation are shown superimposed on Figure 2,

From the figure it is clear that the non-equality of A and B does not

affect the motion in any important way.
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Propellant Required to Spin up to w,

o
In the roll axis we have,
. F? -
©, T T (37)
So
Fit 1
©,= ¢~ = (Impulse) (38)
I 1 Cw
and w + Propellant = n;pu 5¢ . 71 Z (39)
sp sp

Letting C= 2 (110, 000) = 18, 300 slug ft2

2= 6.5

w; = w rad/sec (40)
I = 300 lb-sec/lb,

sp
w+ propellant = (2185’)3%%)(§;r) = 30 1bs. (41)

and another 30 lbs will be required to stop the spin after the thrusting
period. Thus each correction maneuver will require 60 lbs of reaction

jet propellant to establish and then remove the stabilizing spin,

Motion of z with Respect to 3—(0 . ;o

The preceding analysis gives the angle between z and _z_o but does

not tell how the thrust axis mcves about in the plane normal to Eo' To get

this motion we could use the usual Euler angles but the equations are not

well behaved. Instead, for computational purposes it turns out to be

easier to define more general sets of direction cosines as

C =

%

11 " % Cra=x -y, Ciz=x " z,
CZl R A xo CZZ =y yo C23 =y Zo (42)
C3l =z ° X C32 =z z C33 =z z
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where the C13, C23, C33 set is the same as the set given by (8). There

are 6 constant equations between these direction cosines:

CHZ + CIZZ + Cl32= x°2= 1
CIZZ + szz * C3zZ = yo2= 1
R N L z%=1 - (43)
c,f+cp+ C, =x"=1
.+ C,p + C.23(2 =y%=1
Cy+Clvcf=22=1

And these are useful for computational checks and to determine one

from the other. With reference to Figure 3 and (42), we see that

Zs
0 z
Yo
¢
x
o
Figure 3.
P zZ + x =C_, =sin®0 sin ¢

‘ o 31
C32 = sin O cos ¢ i

(44)

N
b
|
b«
|°

i
[
I
i
l
i
]
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So with C13 and C32 we know all about the motion of the z (thrust axis)

with respect to the fixed ;0 , ;;o’ z

o
the relation x = w x X, and so forth, we get the sets:
C11= €219, - 319y C127 229, = C32%y
€217 C319% - Cq) 9, C227 C329 - Cpp9, | (43

C,,=C.,w -C
y

21 “x 327 Y12 % T Y22 %%

With the initial conditions

Cu(o) = sz(o) =1

CZI(O) = C3l(o) = CIZ(O) = C3Z(°) =0 (46)

Now since the C's are direction cosines and we want to get C3l and CSZ’

we can transform the equations by the definitions below,

C;) = sin )\l C3, = sin )\Z

A
C,} = cos\, cos ¥, C,,=cos N, cosy, (47)
C,, = cos A 1 sin g C,, = cos )\2 sin §,

Hence from the initial conditions (46) we have

I_Klo = )\ZO :Lploz ¢20=0 (48)
e
Using (47) in (45) we get

C‘,’1 = )\1 cos )\1-—' wy cos )\1 COSLlJl - w_cos )\1 sin 411

. . (49)
C3Z: )\2 cos )\2: wy cos )\2 sin 4}2 - w_cos )\2 cos Lpz

system. Differentiating (42), using
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So

X1= wycosnpl -wxs1n41l

. (50)
X2= wy sin liZ -w_ cos l.lJZ
Solving for (40), (41) and differentiating using (45) and (47):
b= & @al [ S21 | _ S % -G Gy
- °n | T gz
' 11 21
_ C11(C3y 9y - €1 9,) - Cy (Cy 0, - Cyy )
2 2
Cn * ¢y
. _ w_ cos )\l cos‘.l:1 sin )\1 + wy cos )\1 sin LIJl sin )\1
Lpl = - wz+ y3
cos A\
1
:pl = -w +tan )\1 [wx cos qu + wy sin q;l ] (51a)
Cp S B | [Clz] - C22 €12 - €125,
2 adt C - 2 2
22 C12 -l-CZz

C22(Cap @, - C3p0) - C 1, (Cp0 - Cpy0,)

2 2
Cir2 * 22
B w_ cos )\2 sin \LJZ sin )\2 + wy cos )\2 cos 412 sin )\2
=W, - { 5 )
b, = w - tan 7\2 ( w_ sin l.lJZ + wy cos q.:z) (51b)

Equation (50) and (51) together with the initial conditions then form a set

of four first order equations which are well behaved and equally suitable

for digital computation,
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Approximate Solution for A = B Case

From Figure 3 we see that in any case of practical interest 6 will
have to be small, so that both )\1 and 7\2 must be small and in particular
will be small compared with w . Thus in solving (51) it is always a good
approximation to use just the leading term. In particular, for the first

case considered, using (16) and neglecting the second terms in (51a) and

(51b)

\plz - wzo so 4:1 = -, t
° (52)
b, + W, so ¢, = w, ot
o o
Then using (52) and (16) in (50):
A2~ w sinw t cos w t+ w (1 -coswt)sinw t
1 t n z t n z
o o
=wts1nwzt-wts1n(wz -wn)t
o o
)\Z~wt sin mnt sinw, = -w (1 - cos wnt) cos t (53)
o o
~ - -
Z-w cosw t+ w, cos (wz wn)t
o o
Integrating (53) with the initial conditions (48):
[ﬁ_ét " wt ' o
' )\lx—(l-cosw t) - (1- cos (w -w ) t)
! w Z w - W z n
! z o z n o !
i o o '
: (54)
| W, W, i
; XZ:", i (sinw_t)+ — sin (wz - wn) t |
z o} z n o :
B S
Thus I_— T T
! (.Ot w
f)\l e (e ) (55)
avg 2,z
* —
;)\2 =0
| avg
‘—. -
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From the form of (54) we see that if we look down on the (xo, Yo zo)
system and trace the motion of the z axis it has a constant average value
along the - ;o axis and is the sum of two sinusoids. The high frequency
w, term is of small amplitude and the low frequency (wz - wn) term is

of?arger amplitude. Using the values of (34) °

“t “n - L0n.6y) |, o
B CREE 3. T4(. 53)
o "o
w
t _ .07 _ _ o
a—;——ml =.022r=123
° (56)
w
t _ .07 - o
5 Te- - 53 =.132=17.6
z n -
o
w = 3.14r/sec= 2 sec period
o
w, -w =0.53r/sec= 12 sec period
o

Thus we can construct the motion of the z axis as in Figure 4,

0%l
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To see the effect of spin speed, we re-express the average angle in terms

of torques, etc., as

M
W W Ao~ " %n
Moo= 't(n y = —= o = 2 C
w (W - w
avg zo z, n wz (w -wz (1-3—)) sz (-A—)
o} o o o
_ M
xl A (57)
avg sz
o

Thus for a given moment the average z axis displacement from the
desired direction varies inversely as the square of the spin speed.

We now recall the results of Note 22 where it was shown that
when we are only controlling re-entry angle then we can place z_;
along the re-entry angle sensitive axis as defined by Note 22, and then
- the motion of z in the x_, Y, plane contributes zero error to re-entry
angle so all we are concerned with is (1 - z - ;o) and this is less than a
few percent even for the 12'' c.g. error considered,

Then, while more analysis is needed, this preliminary study
strongly suggests that for CM aborts, spin stabilization for attitude
control during the boost phases is very promising.

Incidentally, in this regard we note that the main engine maximum
gimbal deflection is t7° and the distance from the nozzle to the c. g. of
the CM/SM is about 15 ft. Therefore, with the engine jammed hard over,
the lever arm of main engine thrust with respect to the vehicle center line
is 15sin7°= 1. 8 ft. Thus, witha c.g. shift of 1 ft, the rnaximum possible
lever arm with jammed engine is 2. 8 ft, rather than the 1 ft. assumed in
preceding analysis. If we then raise the spin speed to ‘\/—Z‘—B- m= 5,25 rad/
sec, so the centrifugal force 3 ft. off center is up to 2, 8 g, the z axis
deflections will still be the same as in the analysis, Thus with spin
stabilization it appears possible to operate with a hard over jammed main

engine,
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APOLLO NOTE NO. 47 G. F. Floyd
April 17, 1963

EFFICIENT BOOSTING WITH LOW THRUSTS

This note examines the feasibility of CM/SM returﬁ to earth
from lunar orbit in the event of a main engine propulsion failure. In
this case, the only propulsive devices available are the reaction jets,
and of the 16 reaction jets only 4 are oriented so as to apply positive
thrust. Since their individual levels are 100# the thrust available is
100, 200, 300, or 400# depending upon how many of the possible 4 are
still working. The reaction jets are designed to be continuously burned
without overheating and use the same fuel as the main engine. However,
in the present design plumbing is not provided to replenish the reaction
jet tanks from the main engine fuel tanks. However, this provision was
in the original design and perhaps could be provided.

The CM/SM weight in lunar orbit is about 44, 500 # and after the
3000 ft/sec boost needed for transearth trajectory will weigh about
36,500#. Thus the average mass is about 1200 slugs, so even with all
the possible thrusting reaction jets the average boost acceleration is
only about 1/3 ft/sec2 so to gain 3000 ft/sec will take at least 9000 sec
or 2.5 hours which is more than an orbit periced, and this could be
increased to 10 hours or 5 orbit period if only one thrust producing
reaction jet were still working. Thus we have a low thrust case and
wish to investigate the boost required to achieve the proper transearth
trajectory. Since we are only interested in calculating the extra boost
needed, we consider the simple analytical case of going from circular
to escape with finite thrust. For completeness in the notes we next
derive a well known but useful relation,

Let

1/2 VZ -

>

E (1)

wiF

1/2 V-V -

ol
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Then

E=V-7V+ L R (2)
K
But
V=Z+§=Z-—"2-'R (3)
R
R:V—TR=—V'—R- (4)
R
SO
E=V. T-LRsl VR (5)
R R R
=V. a2
Also
Vb= a dt (6)
o
So
Vb=a. (7)

Hence dividing (5) by (7) we have

dE E =V.a=v--1-a (8)
dVb Vb a

Then letting (6) be the angle between the instantaneous velocity and the

instantaneous thrust acceleration, we have

T-Técosﬁ
a

\' (9)

So solving (1) for V and using this and (9) in (8) we get

féchosé=\/%+2E cos & (10)

o’
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So
av sec 6 (d E)

- (11)
b
2
VR * 2E |

Integrating (11) over the energy levels Eo to Ef we get the required

boost Vb :

E
secd dE

Vb req.= \/-ZT— (12)
E, = 2E

Equation (12) involves no approximations and is useful because it clearly

shows what makes boosting slowly inefficient in that (6) is under our
control so can be made zero, and then the only controllable is (R) since

E has to go from Eo to Ef . From (12) we see that impulsive boosting

with 6 = 0 gives

E
E, £
- dE I
Vbimp._ > /v 1 ZE (13)
E Hy 2k °
o R
° E
(o]

Then for circular to escape we have

_ - _ M
Eo—Ec_ZR

(14)

Esze=0

- /21 [ _ [
Vbimp. 3 B /R ® (V2D (15)
(o] V (o) [o]

SO
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The procedure to be followed is suggested by (12) and is to hold
a slightly below V , (6= 6C) » to try and hold R down without increasing
sec & significantly. We then pick a value Rc greater than Ro and adopt

the following rule:

Boost at constant down (6C) when R= Rc (16)

so when R reaches R we cut off and coast until R becomes less than R .

Before exam1n1ng the type of trajectory that will result we return
to (12) to see what kinds of values of R and 5 we might want. Since the
rule (16) will result in R always being less than R while we are boosting

we have:

sec6 dE >

= secd _/—"-PZE
breq > c R
“ +2E c

B
2R
o
C C [o)
. R
= R—c secC 6C ‘\’ 2 -io-

Taking the ratio of (17) to (15) we get

R
-/ C
Vb re Rc ﬁ- ‘- -R;
v d < R sec 6C (18)
bimp. o V2 -1

Equation (18) is plotted in Figure 1 and from the figure we see that to hold
the upper band or vy req. within 10% of V

bimp. Feduires that we keep 6c

less than about 15° and Rc less than about 1. 10 Ro . For the lunar case
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Ro is about 1000 miles so that the boosts will be terminated after about

a 100 mile increase in altitude above the circular orbit altitude. Thus
for a 100 mile orbit altitude the boosts will be made at altlt"des between
100 and 200 miles.

To investigate the boost trajectory that results we refer to

Figure 2.

. .

o .
, end of nth boost
/
- ,
N /7
S 2
A T

Y

Figure 2,

During the coast phase following the nth boost cycle, energy and momentum

are constant so

Bty = B
or

- 2 M
1/2v‘7‘ o(nt1) = R = 1/2V n TR
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Hence

Vowmr1) = Vin (19)
Also
Ho (n+1) = Hf(n)
e Vo(n+l) cos o- o(nt1) = R Vf cos c-fn

so with (19)

a

%0 (n+1) fn

with the signs of °y and Te taken oppositely as in the figure. Thus with
this procedure the coast phase simply changes the sign of pitch angle to
a dive angle of the same magnitude. Therefore, on a computer when we
integrate the equations of motion, we simply forget the coast phase and
integrate the ordinary equations of motion, changing the sign of R every
time R reaches RC .

To investigate the motion of the boost portion around the moon itself we
use as an inertial reference ﬁ Then let ¢1 be the central angle that the vehicle
moves throughin the first boost Assuming approximate symmetryaboutR ofthe
elliptical coast phaseswe thensee that the second boost starts approximatelyat ¢1
’
so starts the third at (Lpz -411) before R » SO ends at (413 + ¢1) beyond
Thus the angular distance beyond R that the boosts end follow the pattern
LlJl , 412 L‘Ul , 4)3-412-} 4:1 s 4;4 ¢3+4J2 LJ,JI » etc. Since (4} ) is steadily

decreasing, the algebraic sum of the 4) also goes to zero with this

before R so the vehicle ends the second boost at (lhz 4)1) beyond R

method. Thus the boost tends to end at R » Just as ar impulsive boost
would.

Having shown that the actual boost tends to take placeat a fixed point
with respect to the moon, it is now convenient to piece together all the boost

phases., This leads to the type of figure sketched in Figure 3,
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Figure 3,

The minimum R during a phase can of course be less than R0 depending
on the value of 6C that is used. To investigate this a little analytically

we use the definition of symbols of Figure 4.

Figure 4.
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Then we have the usual equations

R=3a3a+g

where
R=1RR+T0R9
5.—=Teacos(0-6)+Trasin(cr-6)

e — 2
g=-T p/R
Io=T 6 ; Tr=-Tee

Differentiating (21), then using (20), (22), and (23) we get the usual

equation for R

R = RS -p/R2+asin(o'-8)

Where from the figure ‘

2

RO = Vcosgc
Using this in (25) we have

V2 oZ
R=——i-—s—q-—&2—_+asin(cr-6)
R R

Now at the start:

2 )
Vo 2
= = LZ = 1 moon g= 5.5 ft/sec
R R
o o

and near the end V—)\/Z Vo with R= RC s SO

2
Y_. —> 2 moon g~ 11 ft/SeCZ
R .

with }L/RZ staying at about 5.5 ft/sec?

less than . 3 ft/sec2 » and we now know from the first analysis that we

For the case of interest (a) was

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

want less than 15° or so. Thus, during all except possibly the first cycle,
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the last term in (27) is small compared to the sum of the first two and
this suggests that ﬁ, hence the time duration of each cycle, cannot be
controlled appreciably with 6. So 6 = 0 should be about as good as any-
thing else.

A digital computer computation of the motion has been made for
several cases and the results presented in Figure 5 for the following con-

ditions:

Ro= Lunar Circular Orbit at 100 n., mi. altitude.

w_ = 44, 500 lbs,
o
I = 300 1b-sec/lb.
sSp
Thrust = 400 1bs and 20, 000 1bs.
6= 0°

From the figure we see that the procedure is actually much more
efficient than the upper bound plotted in Figure 1, however, the total time
required is very long. The boost time is, of course, still about 9000 sec
but the coast periods are very long as the orbit eccentricities approach
one, The number of orbits is reasonable (the spacecraft reaches escape
during its third orbit for Rc - Ro = 500 n. mi, ), and these orbits remain
in the lunar sphere of influence so the calculations are correct.

The total time to reach escape is, however, probably excessive
in terms of the life-support system capability except for the case where
the CM main engine fails during the terminal portion of the deboost into
lunar orbit, Here an abort will be necessary and we have a 24 hour head
start so the method may be useful,

It is quite apparent from the nature of these first results that very
good efficiency and short boost times would result with thrust levels down
by an order of magnitude below the present 20, 000 lbs, To investigate this,
Figure 6 shows fuel cost versus thrust level for continuous boosting from
circular to escape at 6§ = 0°, Also shown are the fuel costs to go continuously
from circular to higher eccentricities, From the figure it is clear that the
extra fuel cost of lower thrusts is small and can be more than made up with

the reduced engine weight which would accompany lower thrusts,
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More important, a thrust level of 2000 1bs instead of 20, 000 lbs
would increase the accuracy and ease of the emergency mode attitude

control by a factor of 10 and also permit small midcourse corrections

to be made with the main engine,
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APOLLO NOTE NO. 49 G. F. Floyd
23 April 1963

PRE-BOOST ATTITUDE CONTROL

In Note No. 38 we showed that spin stabilization appears quite
feasible for attitude control during a boost phase, and that this form of
stabilization should be capable of handling ever the case of a hard-over
jammed main engine. To complete the attitude control study, this note is
devoted to an analysis of how the vehicle can be initially aligned in the
commanded direction before being spun up and the main boost applied.

If the reaction jet and autopilot are operating there is, of course,
no control problem but the purpose of this note is to examine how much
of the attitude control system can be inoperative and still achieve the initial
alignment. The reaction jet nozzles are mounted on the skin with the vehicle
c. g. in the nozzle plane in four clusters of 4 nozzles each. Thus, we have
16 nozzles, and with this arrangement have the following force applicators

(neglecting thrust components):
4 CW Roll
4 CCW Roll
2 Pitch Down
2 Pitch Up (1)
2 Yaw Right
2 Yaw Left

Since each jet has a separate combustion chamber and a separate pair of
relay operated control valves to admit the fuel and oxidizer to its combustion
chamber, the nozzle operating probabilities are essentially independent
(neglecting common manifold failures). Thus, there is a definite probability
that the reaction jet system will be in a degraded operatirg condition. Let

(q) be the probability that any particular reaction jet nozzle is not in

operating condition, and this will be taken as the same number forall 16
nozzles,
Then, the probability that we have attitude control in a particular

direction is as follows:

Have CW Roll =1-q*
Have CCW Roll =1 - q4
Have Pitch Down = 1 - qZ
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1 - qZ
1 - q2
Have Yaw Left =1- q2

Have Pitch Up
Have Yaw Right

If we forget the failures of manifolds (so sets go out), the above are inde-
pendent, hence the probability that we have complete control (all axes both

plus and minus) is just the product, so

4% 2
Pcomplete= (1-4979 (1-47 (2)

Ifq= 0.1, Pcomplete is only . 96 which is nothing spectacular in the light
of the 0. 99 crew safety requirement.

It, therefore, appears of interest to see how many of the complete
reaction jet control nozzles can be inoperative and still perform the necessary
pre-boost attitude control. Calling the 8 pitch and yaw nozzles fore-aft
nozzles, we will next show that starting from arbitrary initial body angles

and body rates, it is possible to achieve the desired final orientation of the

thrust with the use of:

1 CW Roll
1 CCW Roll (3)

1 Fore-aft Jet (can be either + or -)

Calling this set the necessary set, and letting (q) be as before the failure
probability of any of the 16 nozzles, the probability that we have the necessary

nozzles is

2
-4 8
necessary (1-4979) (1-4q7) (4)
Again, taking q= 0, 1, Pnecessary = .9998 which is a good number but when
q=.3, P falls to , 984,

necessary
In an effort to improve the above situation, it will also be shown that
the necessary attitude control can be achieved by the sequential use of the
3 directions called out in equation (3), and further that the allowable time
delay between the use of each of these three can be minutes or longer,
Therefore, if the individual manifold assemblies could be manually rotated
through t 1800, it would be possible to use any of the 16 jets for any of the

three functions listed. Calling this arrangement the modified system, the
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probability of it working is

Prnodified= 1~ 4 (3)

To see whether this rather complicated engineering modification '
would really pay dividends we have Figure 1 which shows the three probabilites
of equations (2), (4) and (5) versus (q).

Inspection of the figure shows that unless (q) is very small indeed,
then it is unrealistic to expect the complete system to be operative with
probabilities consistent with the overall mission crew safety requirement
0of 0,99. In fact, since the attitude control is necessary for a safe return,
the probability gains to be made with the modified system are quité signi-
ficant and an engineering study should be made of the difficulties involved,

It is now necessary to demonstrate that the necessary attitude control
can be accomplished with the minimal system described above. For this
problem we use the same definitions as in Note No. 3§ and consider the
case of the symmetrical vehicle (A = B) with the z axis the longitudinal
spacecraft axis. We first consider the case where we apply roll moments’
only so Mx = My = 0 and Mz will not be assumed constant. The equations

of motion are derived as in Note No. 38 and with the above torque assumptions
become for (A = B):

M =0=Auw_ -{(A-Cluv_ w
x x z y

M =0=Ab +(A-Cluw w (6)
y y z X

So
@ (1-%)&\«:
. C
wy— -{1 - K) w, W (7)
M
- z
“zT T

Now use the definitions
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w é w 2 + w 2 (8)
Yo *o Yo ”

w t
A -1 Y C
¢ (t) = tan —2 '(I-K) J w, dt (9
*o (e}
With these definitions the solution of (7) is
wx(t) = wao cos ¢ (t)
w(t)= w sin ¢ (t 10
WO = Oy (t) (10)

t
— . 1
(Dz(t) = \OZO + t J Mz dt

as may be easily checked by substitution into (7) and an initial condition
check.
Now let { be the roll angle about z so,

>

$ @ | (11)

Then with (9) we have

=-0-5%ay (12)

With these equations we now assume that either we have only one
operable reaction jet which can be rotated ints either the CW or CCW roll
or a fore-aft direction or a fixed jet in each of these three directions. Let
the initial conditions be an arbitrary spin of the spacecraft about all three
axes and let there be an arbitrary direction in space along which we wish

to point the z axis, The procedure is as follows:
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Step 1 Apply roll torque until the spin about the z

axis reaches zero,

The.angular velocity will now be in the xy plane (since w, is now
zero) and (é) will also be zero since w, = 0. (See (9).) Thus ¢ will be
constant and so from (10) the angular velocity will be constant about both
x and y. Since we are assuming that only one fore-aft jet is working it is
now necessary to bring all the angular velocity along the axis perpendicular
to this fore-aft jet and in the proper sense so that torque about this one
axis will remove all the angular velocity. To move the angular velocity to
the proper direction we use (12) which says that for every degree of roll
angle the ¢ direction (which locates w_ with respect to the vehicle hence
torque axes), will change by -(1 - %) degrees and stay there. Thus if the
rotation ended up at the end of Step 1 along the +y direction and we wanted
it along the -y direction we would want to change ¢ by 180° and with
C/A = 1/6 this would reauire a roll of 6 180 = 216° plus or minus any

5
multiple of 360°, Therefore, we have:

Step 2 Roll the vehicle through the proper angle
to place the angular velocity along the
direction about which the single fore-aft

jet can remove angular rates,

At the conclusion of Step 2, the vehicle will be rotating about the

xy plane axis where the fore-aft jet can remove rates so:

Step 3 Apply the fore-aft thrust until the xy plane

angular velocity goes to zero.

The angular velocity of the vehicle is now zero so we are now ready
to point the z axis at the commanded star., With only one fore-aft jet, the
procedure is to first roll the spacecraft about z until the star lies in the
z / fore-aft Jet plane, then the roll stopped. Again, since the vehicle will
roll past the desired point each revolution, there is plenty of time to start the
slow roll with a single jet and then rotate the jet 180° to stop the roll. There-

fore, we have
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Step 4 Roll the vehicle through the angle necessary
to place the star in the plane of z and the

operating fore-aft jet.

Now all that remains to do is to apply a fore-aft torque to slowly
pitch the z axis into the desired direction and then stop this pitch rate with
a reverse torque in this plane. Again, a long delay is tolerable to r everse
the jet direction since the vehicle will pass the desired direction once each
revolution,

The z axis is now pointed in the correct direction with the vehicle
at zero angular rate. Therefore, the final step is then to apply a long roll
torque to build up spin speed for later attitude stabilization during the

thrust application.

Step 5 Apply roll torque to build up desired spin
speed for attitude stabilization during thrusting

period.

If the boost is to be applied with the 20, 000 1b. main engine, a 1 foot
€. g. uncertainty gives a 20, 000 1b-ft torque and Note No., 38 indicates that
a spin speed of about 3 rad/sec will be necessary. On the other hand if
the boost were applied by a single fore-aft jet the moment would only be
100 x 7= 700 1b-ft which is a factor of 30 less. However, the angle varies
asthe square of spin speed (equation (57), Note 38), so the minimum spin
with only one reaction jet would be about 0, 6 rad/sec and with 4 would be

about 1, 2 rad/sec.
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APOLLO NOTE NO, 63 G. F. Floyd
10 May 1963

DSIF CAPABILITY ON TRANS-EARTH TRAJECTORY

As shown in Note No, 26, the sensitive directions for re-entry
dive angle and miss along (range miss) are so close while in the earth's
sphere of influence that independent control of the two orbit parameters
is impractical. Luckily, however, the results of Note No, 62 show that
this high correlation also exists back at lunar injection, At lunar injec-

tion we have for the coefficients along the most sensitive direction,

ANI“
Ad

= 220 km per degree (1)
f

while after we enter the earth sphere of influence, we have, from page 4
of Note No, 26:

AM“

A5 = 210 km/degree (2)

f

and the sensitivity ratios are of the same sign, Therefore, the ratios
are so nearly the same that midcourse corrections to correct the effect
of injection errors or re-entry angle will automatically correct the range
miss. Further justification of this conclusion is furnished by the fact
that from Note No. 53 we see that the range dispersion with a zero-lift
re-entry will be several hundred miles at re-entry angle dispersion of
0.1°, Therefore, there is no gain in holding the re-entry miss much
smaller than this value, This result is, of course, fortunate since we
can't control the two separately anyhow,

Also as shown in Note No, 26, the sencitivity of the out of plane
miss (track miss) is very much lower than that of the re-entry angle.
Therefore, if we can measure and control the re-entry angle to 0, 1°
we will be able to control the track miss to better than a fraction of a
nautical mile. Consequently, the following analysis of the DSIF capability
on the return trajectory will be devoted entirely to the variance in the

re-entry dive angle,
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The basic formulas for the variance in the estimated value of
(Bf) from n data observed over the range interval RZ to Rl are derived
in Note No. 5 and the results of a cornputer evaluation of these formulas
is given as ¢(R2, Rl) of Figure | and Figure 2, The variance in (6
related to the plotted function qS(Rl, RZ) is,

P

2 .
o (89 = N
where
A T(RZ) - T(RI)-
N = number of samples =
correlation

and T(R) is the time-to-go at range R, which is plotted in Figure 3,

The optimum method of combining old and new measurements
when there is an intervening imperfectly executed change is derived
in Note No. 57, and this method was used in calculating the performance
during a typical midcourse correction system for earth return.

In order to determine the limitations of the DSIF, the assumption
was made that the CM was under completely manual control with no auto-
pilot and no integrating accelerometers., The execution of the ground
derived commands is then accomplished by pointing the spacecraft at the
ordered star, spinning it to get spin stabilization (see Note No. 38), and
applying the boosts for a commanded time interval. With such crude
control, the major error that results would be that of the assumed 10% engine
thrust level uncertainty since the errors due to poor directional control
arising from unbalanced torques (c. g. shifts or locked over nozzles), were
shown in Note 38 to be less than 12° and with the boost ordered in the most
sensitive direction (Note 22), these directional errors would result ir. per-
centage error of less than 2% which is negligible compared with the 10% magni-
tude error that would result without a longitudinal integrating accelerometer.

The assumption of very poor execution of the commands puts a
real premium on navigation accuracy and short smoothing time in order
to keep the midcourse correction fuel requirements within the fuel pad

limits. The reason for this is shown in Figure 4 which is a plot of the
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re-entry angle sensitivity coefficient in degrees per meter/sec as a

function of range from the earth, At injection the coefficient is 4, 5°/

m/sec and it very rapidly falls to 3. 0°/m/sec as the spacecraft goes

through the lunar sphere of influence. Thus even if the injection error

could be completely corrected when the vehicle reached the earth

sphere of influence, the correction required would be 1. 5 times the |
injection error and with a 10% autopilot the injection error will be |
%0 x 3000 = 300 ft/sec so the midcourse AV required will be at least

450 ft/sec.

No attempt has been made yet to optimize the midcourse cor-

satisfactory performance. The results with such a '""'guessed at'' program

|
|
|
rection schedule other than just intuitive guesses at one which will give ‘
i
are shown in Table 1.

Table 1.
DSIF 1o Resultant
Time Till Uncertainty Commanded Error in |
Re-entry in Re-entry Correction Boost Re-entry
(hrs) Angle No. ft/sec Angle (degrees) ‘
72 DNA Injection 3000 450
50 1.1 1 550 45
36 1.1 2 69 4.6
24 .7 3 10 .
16 .3 4 2.5
8 . 09 5 1.5 . 09
2 .02 - - -

As the table shows, the capabilities of the DSIF are so good that even with
very poor execution of commands, resulting in very large initial errors,
large errors in the execution of each command (so that old smoothing data
is not useful, see Note 57), the DSIF still can get the spacecraft within

the 0. 1° tolerance at eight hours to go (spacecraft at 15 earth radii).
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It will be noted that five corrections are required. This is not due to
DSIF uncertainties but simply because of the large execution error that
was assumed. With a 10% execution error, and an initial error of

4500, it would take four perfectly computed corrections to bring the
result to . 04 whereas with present DSIF accuracy, tracking errors
stretch this to only 5. The total midcourse boost needed is 633 ft or
about twice the injection error as compared with 450 ft/sec if there were
DSIF errors. ‘

In summary, it appears that with DSIF orbit prediction accuracy,
it should be possible to make a safe zero lift re-entry with manual exe-
cution of the commanded maneuvers, Also it should be emphasized that
if there were a single longitudinal integrating accelerometer, the exe-
cution error would be reduced by a factor of 5 to the 2% associated with
spin stabilization. In this case the re-entry angle error reduction of
Table 1 would look much better and reach the ; 1° goal at more than 12

hours out,
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